期刊文献+

基于稀疏逻辑回归的链接模型在分类问题的应用 被引量:2

Application of Link Model based on Sparse Logistic Regression in Classification Problem
下载PDF
导出
摘要 随着科技的发展,数据分类问题应用在生活的多个方面,然而在面对庞大的数据时,往往采用压缩过的稀疏数据,这就为分类模型的发展带来了极大的挑战。为了提高稀疏数据分类的准确性和正确率,提出了基于稀疏逻辑回归的链接神经网络模型,由此构建成可靠的分类模型。以两类数据作为研究对象,首先进行数据预处理,再提取出数据特征对其进行分类。研究结果表明,分类模型不仅可以应用于稀疏数据,而且正确率较神经网络模型的结果有所提升,手写字的正确率从90.1%提高到94.86%,声音分类的正确率从70.3%提高到74.4%,证实该模型有效。 With the development of science and technology,data classification is applied in many aspects of life.However,when facing huge data,compressed sparse data is often used,which brings great challenges to the development of classification models.In order to improve the precision and accuracy of sparse data classification,this paper proposes a link neural network model based on sparse logistic regression,so to build a reliable classification model.Taking two types of data as research object,data is preprocessed first,and then data features are extracted to classify them.The research results show that the classification model proposed in this paper can not only be applied to sparse data,but the accuracy is improved compared with the results of the neural network model.Accuracy of handwriting has increased from 90.1%to 94.86%,and accuracy of sound classification has increased from 70.3%to 74.4%,which proves that the model is effective.
作者 常鈺迪 CHANG Yudi(Zhejiang Sci-Tech University,Hangzhou 310018,China)
机构地区 浙江理工大学
出处 《软件工程》 2021年第6期2-5,共4页 Software Engineering
关键词 逻辑回归 稀疏性 神经网络 多分类 logistic regression sparsity neural network multi-classification
  • 相关文献

参考文献3

二级参考文献12

共引文献23

同被引文献38

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部