摘要
为了提高采摘机器人的自动化采摘效率和质量,将机器人动力学建模和仿真模拟方法引入到了采摘机器人的设计过程中,基于SolidWorksv软件建立了采摘机器人机械手的三维模型,并将其导入到ADAMS软件中进行了仿真模拟计算,得到了机械手动作的轨迹,通过对轨迹数据的分析可以实现机械手动作的优化。在机器人动作控制精度的优化上采用了神经网络PID算法,并对优化前后的动作精度进行了对比,结果表明:采用神经网络PID算法可以明显提高动作的精度,对于采摘机器人的优化设计具有重要作用。
In order to improve the efficiency and quality of automatic picking robot, the dynamic modeling and simulation method of robot is introduced into the design process of picking robot. Based on solidworksv software, the three-dimensional model of picking robot manipulator is established, and it is imported into ADAMS software for simulation calculation, and the trajectory of robot action is obtained. The analysis of trace data can optimize the action of manipulator. The neural network PID algorithm is used in the optimization of robot motion control accuracy, and the operation accuracy before and after the optimization is compared. The results show that the neural network PID algorithm can significantly improve the operation accuracy, which plays an important role in the optimal design of picking robot.
作者
薛涛
韩春红
Xue Tao;Han Chunhong(Jiaozuo Normal College,Jiaozuo 454000,China)
出处
《农机化研究》
北大核心
2021年第12期65-68,共4页
Journal of Agricultural Mechanization Research
基金
河南省高等学校重点科研项目(17B520022)。