期刊文献+

惯性力和介电泳力耦合的细胞分选仿真设计研究

Simulation Design Study on Chip Fabrication of Coupling of Inertial and Dielectrophoresis Forces
下载PDF
导出
摘要 针对目前微流控芯片单物理场分选精度低、通量小等劣势,提出了多物理场耦合的分选方式。多物理场粒子分选方案是采用惯性力与介电泳力耦合的方式,通过理论计算分析了惯性力与介电泳力的工作原理,并利用COMSOL对惯性力粒子速度变化、介电泳电场进行了仿真分析,对结构进行了优化,确定了芯片尺寸:整个通道由2部分组成,通道入口处利用惯性力收缩扩张(CEA)完成粒子的聚焦与分离,考虑到分离效率的问题,惯性力进行分选后,加入介电泳进行进一步的分离,以提高芯片的分选精度和分选效率,完成了芯片的加工与制备,对后续粒子的高效分选提供了重要的参考价值。 A multi-physical field coupling separation method was proposed as the disadvantages of low precision and low flux of current microfluidic chips single physical field separation.The coupling mode of inertial force and dieletrophoresis force were adopted in the multi-physical partical sorting scheme.The working principle of inertial force and dielectrophoresis force was analyzed by theoretical calculation,and the velocity change of inertial force particles and dielectrophoresis electric field were simulated and analyzed by COMSOL.The structure was optimized and the chip size was determined.The whole channel was composed of two parts.At the entrance of the channel,the particles were focused and separated by the inertial force contraction and expansion(CEA).In consideration of the separation efficiency,the inertial force was separated and then dielectrophoresis was added for further separation to improve the separation precision and efficiency of the chip,and the chip was processed,which provides an important reference value for the high efficient separation.
作者 李晓红 LI Xiao-hong(Taiyuan Institute of Technology,Taiyuan 030000,China)
机构地区 太原工业学院
出处 《仪表技术与传感器》 CSCD 北大核心 2021年第5期38-41,66,共5页 Instrument Technique and Sensor
基金 太原市科协院士工作站项目(TYSYSGZZ201903) 山西省高等学校科技创新项目(2020L0661)。
关键词 微流控芯片 介电泳力 惯性力 工艺制备 仿真 结构设计 microfludic chip DEP inertia force preparation process simulation structure design
  • 相关文献

参考文献2

二级参考文献40

  • 1Segre C, Silberberg A. Radial particle displacements in Poiseuille flow of suspension. Nature, 1961, 189:209-210.
  • 2Carlo D D. Inertial microfluidics. Lab Chip, 2009, 9: 3038- 3046.
  • 3Carlo D D, Edd J F, Humphry K J, et al. Particle segre- gation and dynamics in confined flow. Phys. Rev. Lett., 2009, 102:094503-4.
  • 4Chwang A T, Wu Y T. Hydrodynamics of low-Reynolds- number flow, part2, singularity method for stokes flows. J Fluid Mech., 1975, 67:787-815.
  • 5李战华,吴健康,胡国庆,等.微流控芯片中的流体流动.北京:科学出版社,2012.190-192.
  • 6Lumma D, Best A, Gansen A, et al. Flow profile near a wall measured by double-focus fluorescence cross- correlation. Phys. Rev. E, 2003, 67:056313.
  • 7Joseph P, Tabeling P. Direct measurement of the apparent slip length. Phys. Rev. E, 2005, 71:035303.
  • 8Lauga E. Apparent slip due to the motion of suspended particles in flows of electrolyte solutions. Langmuir, 2004, 20:8924-8930.
  • 9Saffman P G. The lift on a small sphere in a slow shear flow. J. Fluid Mech., 1965, 22:385-400.
  • 10Ho B P, Leal L G. Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech., 1974, 65:365-400.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部