摘要
往返取物递送移动机器人在入位定点抓取物体时,自身重复定位的不确定性将影响抓取准确性。为此提出一种克服位置不确定性的移动机器人物体抓取新方法。通过机器人体外定点位置深度视觉传感器与机器人手臂系统的关系标定,基于机器人本体激光传感器数据采用迭代最近点算法补偿机器人位置偏差,基于顶抓策略简化描述抓取位姿。通过待抓物识别与定位、确定抓取姿态以及机械臂运动规划等过程,实现了对平整支撑面上形状规则物体的自主抓取。在移动机器人往返取物作业场景下,实验验证了该方法可以显著提升物体抓取的成功率。
When a mobile robot repeatedly executes object pick and delivery tasks,its repeated-localization uncertainty affects the object grasping accuracy.A novel object grasping method was proposed for mobile robot that contain positional uncertainty.Based on the relationship between the depth vision sensor of the robot's external fixed point position and the robot arm system,based on the data of the robot body laser sensor,the iterative nearest point algorithm was used to compensate the robot position deviation,a top-grasp strategy was employed to reduce the complexity of representing the grasp pose.By conducting a series of procedures that contains object segmentation,extracting grasp pose features and motion planning,automatic grasping of regular shaped objects were achieved.In the mobile robot round-trip fetching operation scenario,the results show that the method can significantly improve the success rate of object grabbing.
作者
王迷迷
钱堃
朱林
郑英
WANG Mi-mi;QIAN Kun;ZHU Lin;ZHENG Ying(Chengxian College,Southeast University,Nanjing 210088,China;School of Automation,Southeast University,Nanjing 210096,China)
出处
《仪表技术与传感器》
CSCD
北大核心
2021年第5期101-106,共6页
Instrument Technique and Sensor
基金
江苏省高等学校自然科学研究面上项目(18KJD413001)
江苏高校哲学社会科学研究基金项目(2018SJA2076)
国家自然科学基金资助项目(61573101)
东南大学成贤学院青年教师科研发展基金项目(z007)。
关键词
移动机器人
位置不确定
位姿补偿
自主抓取
运动规划
手眼标定
mobile robot
positional uncertainty
pose compensation
autonomous grasping
motion planning
eye-hand calibration