摘要
分析了双目视觉系统的工作原理及视觉标定方法,利用YOLO V2卷积神经网络算法实现对目标果实的识别,并对目标果实的空间定位进行了深入研究,设计了一套基于双目视觉和机器学习的采摘机器人果实识别与定位系统。在多次实际定位实验中,橘子的深度定位误差最大值为1.06mm,证实了系统具有一定的准确性和稳定性。
It first analyzes the working principle of binocular vision system and vision calibration method, then realizes the recognition of the target fruit by using the algorithm of YOLO V2 convolution neural network, and makes a deep research on the spatial location of the target fruit, designs and studies a set of fruit recognition and location of picking robot based on binocular vision and machine learning. In many practical positioning experiments, the maximum depth positioning error of orange is 1.06 mm, which proves that the system has certain accuracy and stability.
作者
魏纯
李明
龙嘉川
Wei Chun;Li Ming;Long Jiachuan(School of Electronic Information Engineering,Wuhan Donghu University,Wuhan 430212,China;Information Management Center,Air Force Early Warning Academy,Wuhan 430019,China)
出处
《农机化研究》
北大核心
2021年第11期239-242,共4页
Journal of Agricultural Mechanization Research
基金
湖北省教育厅科学研究计划项目(B2020241)。
关键词
采摘机器人
双目视觉
YOLO
卷积神经网络
机器学习
识别与定位
picking robot
binocular vision
Yolo
convolutional neural network
machine learning
recognition and location