期刊文献+

“大数据+创客教育”在高职职业教育中的应用研究 被引量:3

Research on the Application of "Big Data + Maker Education" in Higher Vocational Education
下载PDF
导出
摘要 在大数据时代,人们的工作、生活和学习都发生了很大的改变,创客教育的提出使得人们越来越重视对创造力、创新思维的培养。引入创客教育理念,能够提高学生的创新能力,为企业和经济发展提供人才支持。基于此,笔者立足广东地区的职业教育大数据,探讨"大数据+创客教育"在高职职业教育中的应用。 In the era of big data, people’s work, life and study have undergone great changes. The introduction of maker education has made people pay more and more attention to the cultivation of creativity and innovative thinking. Introducing the concept of maker education can improve students’ innovative ability and provide talent support for enterprise and economic development. Based on this, based on the big data of vocational education in Guangdong, the author discusses the application of "big data + maker education" in higher vocational education.
作者 南楠 杨昌尧 NAN Nan;YANG Changyao(Zhanjiang Preschool Education College,Zhanjiang Guangdong 524084,China)
出处 《信息与电脑》 2021年第6期254-256,共3页 Information & Computer
基金 湛江市科技局科技攻关项目“基于大数据技术的创客教育移动互动平台的设计与应用研究——以幼儿师范专科学校为例”(项目编号:2020B01121) 广东省教育科学“十三五”规划2020年度研究项目“‘大数据+智慧教育’的粤港澳大湾区的职业人才培养模式研究”(项目编号:2020GXJK320)。
关键词 教育大数据 创客教育 LDA模型 文本数据挖掘 big data of education maker education LDA model text data mining
  • 相关文献

参考文献12

二级参考文献151

  • 1卢宁宁,张龙革.感悟智慧教育——克里希那穆提教育思想解读[J].高教研究与实践,2012,31(1):19-22. 被引量:8
  • 2谭松波,王月粉.中文文本分类语料库-TanCorpv1.0[EB/OL].(2007-08-29)[2008-01-20].http://www.searehforum:org.cn/tansongbo/corpus.htm.
  • 3托夫勒.第三次浪潮[M].北京:中信出版社,2006.
  • 4Li Yunlei, Wessels L F A, de Ridder D, et al. Classification in the Presence of Class Noise Using a Probabilistic Kernel Fisher Method[J]. Pattern Recognition, 2007,40 (12) : 3349- 3357.
  • 5Zhu Xingquan, Wu Xingdong, Chen Qijun. Eliminating Class Noise in Large Datasets[C]//Proc of ICML'03, 2003: 920-927.
  • 6Knorr E M, Ng R T. Algorithms for Mining Distance-Based Outliers in Large Datasets[C]//Proc of the 24th VLDB Conf, 1998:392-403.
  • 7Brodley C E, Friedl M A. Identifying and Eliminating Mislabeled Training Instances[C]//Proc of AAAI/IAAI, 1996,1: 799-805.
  • 8Gamberger D, Lavrac N, Dzeroski S. Noise Detection and Elimination in Data Preprocessing: Experiments in Medical Domains[J]. Applied Artificial Intelligence, 2000,14(2) : 205- 223.
  • 9Ramaswamy S, Rastogi R, Shim K. Efficient Algorithms for Mining Outliers from Large Data Sets[C]//Proc of SIGMOD Conf, 2000 : 427-438.
  • 10Griffiths T L, Steyvers M. Finding Scientific Topics[C]// Proc of the National Academy of Sciences,2004:5228-5235.

共引文献2512

同被引文献14

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部