期刊文献+

Seamless integration of above-and undercanopy unmanned aerial vehicle laser scanning for forest investigation 被引量:1

下载PDF
导出
摘要 Background:Current automated forest investigation is facing a dilemma over how to achieve high tree-and plotlevel completeness while maintaining a high cost and labor efficiency.This study tackles the challenge by exploring a new concept that enables an efficient fusion of aerial and terrestrial perspectives for digitizing and characterizing individual trees in forests through an Unmanned Aerial Vehicle(UAV)that flies above and under canopies in a single operation.The advantage of such concept is that the aerial perspective from the above-canopy UAV and the terrestrial perspective from the under-canopy UAV can be seamlessly integrated in one flight,thus grants the access to simultaneous high completeness,high efficiency,and low cost.Results:In the experiment,an approximately 0.5 ha forest was covered in ca.10 min from takeoff to landing.The GNSS-IMU based positioning supports a geometric accuracy of the produced point cloud that is equivalent to that of the mobile mapping systems,which leads to a 2–4 cm RMSE of the diameter at the breast height estimates,and a 4–7 cm RMSE of the stem curve estimates.Conclusions:Results of the experiment suggested that the integrated flight is capable of combining the high completeness of upper canopies from the above-canopy perspective and the high completeness of stems from the terrestrial perspective.Thus,it is a solution to combine the advantages of the terrestrial static,the mobile,and the above-canopy UAV observations,which is a promising step forward to achieve a fully autonomous in situ forest inventory.Future studies should be aimed to further improve the platform positioning,and to automatize the UAV operation.
出处 《Forest Ecosystems》 SCIE CSCD 2021年第1期124-138,共15页 森林生态系统(英文版)
基金 supported in part by the Strategic Research Council at the Academy of Finland project“Competence Based Growth Through Integrated Disruptive Technologies of 3D Digitalization,Robotics,Geospatial Information and Image Processing/Computing-Point Cloud Ecosystem(293389,314312),Academy of Finland projects“Estimating Forest Resources and Quality-related Attributes Using Automated Methods and Technologies”(334830,334829)”,“Monitoring and understanding forest ecosystem cycles”(334060)。
  • 相关文献

同被引文献12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部