期刊文献+

基于神经网络的智能安全评估平台研究

Research on Intelligent Security Evaluation Platform Based on Neural Network
下载PDF
导出
摘要 该文介绍了一种基于BP神经网络的智能安全评估工具。首先利用神经网络的非线性关系的强大学习能力,建立评估模型,然后通过提高训练算法评估数据的准确性、客观性和真实性,再结合AHP层次分析法对项目管理过程数据进行定性和定量分析,从而完成安全评估的过程模拟,最终应用到实际测评中。 This paper presents an intelligent security assessment tool based on neural network.In this tool,first of all,the powerful learning ability of neural network is used to establish the evaluation model,and then the accuracy,objectivity and authenticity of the evaluation data of the training algorithm are improved,and then the qualitative and quantitative analysis of the project management process data combined with AHP is carried out,so as to complete the process simulation of safety assessment,and finally applied to the actual evaluation.
作者 吕泽伟 周海雄 郑华友 彭世强 Lv Ze-wei;Zhou Hai-xiong;Zheng Hua-you;Peng Shi-qiang(Guangzhou Chinagdn Security Technology Co.,Ltd.,Guangdong Guangzhou 510665;Guangdong Provincial Public Security,Guangdong Guangzhou 510050)
出处 《电子质量》 2021年第5期4-7,共4页 Electronics Quality
关键词 层次分析法 BP神经网络 等级保护 智能安全评估 Analytic hierarchy process BP neural network classified protection Intelligent security assessment
  • 相关文献

参考文献2

二级参考文献13

  • 1龙卫江,张文修.基于相近原则的半指导直推学习机及其增量算法[J].应用数学学报,2006,29(4):619-632. 被引量:2
  • 2Nigam K,McCallum A K,Thrun S,Mitchell T.Text classification from labeled and unlabeled documents using EM[J].Machine Learning,2000,39(2-3):103-134.
  • 3Joachims T.Transductive inference for text classification using support vector machines[G].In:Proc 16th Int'l Conf Machine Learning,Bled,Slovenia,1999,200-209.
  • 4Blum A,Mitchell T.Combining labeled and unlabeled data with co-training[G].In:Proc 16th Annual Conf Computational Learning Theory,Madison,WI,1998,92-100.
  • 5Breiman L.,Friedman,J.,Olshen,R.,and Stone,C.Classification and Regression Trees[M].Wadsworth,1984.
  • 6Breiman L.Random forests[J].Machine Learning,2001,45(1):5-32.
  • 7Cortes,C.,Vapnik,V.M.,.Support Vector Networks[J].Machine Learning,1995,20:273-297.
  • 8Dietterich,T.G.An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees:Bagging,Boosting,and Randomization[J].Machine Learning,2000,40:139-157.
  • 9Breiman,L.,Bagging Predictors[J].Machine Learning,1996,24(2):123-140.
  • 10Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[K].Proc of ACM SIGMOD Conf on Management of Data[C].Washington,1993.207-216.

共引文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部