摘要
利用系统聚类分析算法,从规模、结构和效率三个方面设计了度量金融发展的指标体系;通过数据挖掘技术中的系统聚类方法,将2018年中国31个省(自治区、直辖市,不含港澳台地区)根据金融发展水平现状划分为四个族群,根据四个族群的数据特征归纳出金融发达地区、较发达地区、欠发达地区和不发达地区,给出了不同类别的区域金融可持续发展的相关建议.
This paper makes a comparative study on the financial development level of 31 provinces(Autonomous Rrgions,municipalities directly under the central government,excluding Hongkong,Macao and Taiwan regions)in China in 2018 by using the hierarchical clustering analysis algorithm.Firstly,the index system is designed to measure the financial development from three aspects of scale,structure and efficiency.Then,through the hierarchical clustering method in data mining technology,the different provinces are divided into four ethnic groups according to the current financial development level.Next,the financially developed areas,the more developed areas,the less-developed areas and the undeveloped areas are summarized and categorized according to the data characteristics of the four ethnic groups.Finally,relevant suggestions for the sustainable development of different types of regional finances are provided.
作者
高慧娴
薛玉莲
方忠
GAO Huixian;XUE Yulian;FANG Zhong(School of Economics,Fujian Normal University,Fuzhou,Fujian 350117,Chian;Fujian Chuanzheng Communications College,Fuzhou,Fujian 350007,Chian)
出处
《福建师大福清分校学报》
2021年第2期189-195,共7页
Journal of Fuqing Branch of Fujian Normal University
基金
国家社科规划一般项目(18BJL127)
福建省社科规划项目(FJ2019B016).
关键词
数据挖掘
系统聚类
金融发展现状
data mining
hierarchical clustering
financial development status