期刊文献+

基于天空区域分割的输电通道图像暗原色去雾方法 被引量:1

Dark Channel Prior Dehazing Method for TransmissionChannel Image Based on Sky Region Segmentation
下载PDF
导出
摘要 输电通道的实时监测系统会受到恶劣天气情况的影响,尤其是北方冬季有雾天气较频繁,因此,去雾处理是实时监测系统的重要预处理环节。针对图片中存在大量天空区域或白色物体会导致原方法失效的问题,在暗原色先验方法的基础上开展研究,提出了基于天空区域分割的改进方法,获取了优化后的大气光值和透射率值,从而实现了有雾天气下的有效监测。经过对不同去雾方法进行研究和对比,实验结果表明基于天空区域分割的暗原色去雾方法能取得更好的效果,分别在全参考和无参考的图像质量评价指标上取得更高的水平,尤其是针对包含天空区域的输电线路图像,能够较好地进行图像预处理,并且在雪天情况下对比原去雾方法有非常明显的去雾效果。 The real-time monitoring system of transmission channels will be threatened in poor weather.Considering the frequent foggy days in northern winter,it is essential to dehazing in the preprocessing link.Since massive sky regions or white objects in the picture will invalidate the original method,this paper proposes an improved method based on the dark channel prior.We obtain the optimized atmospheric light value and transmittance value to realize effective monitoring in foggy days.Through researching and comparing different dehazing methods,the experimental results show that the proposed method presents better image quality evaluation index with full reference and no reference respectively.It is excellent in the preprocessing of transmission line images containing sky area.In snowy days,it features ideal fog removal compared with the original dehazing method.
作者 翟永杰 江柳 龙雅芸 赵振兵 ZHAI Yongjie;JIANG Liu;LONG Yayun;ZHAO Zhenbing(School of Control and Computer Engineering,North China Electric Power University,Baoding 071003,China;School of Electrical and Electronic Engineering,North China Electric Power University,Baoding 071003,China)
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2021年第3期89-97,共9页 Journal of North China Electric Power University:Natural Science Edition
基金 国家自然科学基金资助项目(61773160,61871182) 河北省自然科学基金资助项目(F2020502009) 北京市自然科学基金资助项目(4192055)。
关键词 输电通道 图像去雾 暗原色先验 天空区域分割 transmission channels image dehazing dark primal prior sky region segmentation
  • 相关文献

参考文献7

二级参考文献132

  • 1芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 2孙玉宝,肖亮,韦志辉,吴慧中.基于偏微分方程的户外图像去雾方法[J].系统仿真学报,2007,19(16):3739-3744. 被引量:34
  • 3Tan R T. Visibility in bad weather from a single image [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattem Recognition. New York, USA: IEEE,2008 : 1- 8.
  • 4Fattal R Single image dehazing [ C ]// Proceedings of ACM SIGGRAPH 2008. New York, USA : ACM,2008 : 1-9.
  • 5KaimingH, Jian S, Xiaoou T. Single image haze removal using dark channel prior [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE ,2009 : 1956-1963.
  • 6Jean- Philippe T, Nicolas H. Fast visibility restoration from a single color or gray level image [ C ]//Proceeding of IEEE 12th International Conference on Computer Vision. New York, USA: IEEE,2009:2201-2208.
  • 7姚波,黄磊,刘昌平.去雾增强图像质量客观比较方法的研究[C]//全国模式识别学术会议.纽约:IEEE,2009:1-5.
  • 8Sheikh H R, Bovik A C, Cormack L Noreference quality assessment using natural scene statistics :_JPEG2000 [ J ]. IEEE Transactions on image Processing ,2005,14 ( 11 ) : 1918-1927.
  • 9Zhou W, Bovik A C, Sheikh H R, et al. Image quality assessment : from error visibility to structural similarity[ J]. IEEE Transactions on Image Processing,200g, 13 (4) :600-612.
  • 10Carnec M,Le Callet P, Barba D. Objective quality assessment of color images based on a generic perceptual reduced reference [ J]. Image Communication,2008,23 (4) :239-256.

共引文献349

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部