摘要
C/C复合材料因具有密度低、高温力学性能保持率高等一系列优异性能,成为航空航天等领域热端部件极佳的热结构候选材料,但因热解碳基体的脆性特征及单一微米尺度碳纤维不能有效增强尖锐薄壁区域,常规C/C复合材料无法满足尖锐薄壁构件的使用需求。本文综述了纳米管/线增强C/C复合材料的制备方法及其对材料结构和性能方面的影响,概述了引入碳纳米管(CNTs)和碳化硅纳米线(SiCNWs)、碳化铪纳米线(HfCNWs)等纳米材料对改善C/C复合材料力学、抗烧蚀性能影响以及不同纳米增强体对复合材料的增韧机制和抗烧蚀机理。针对目前引入纳米增强体成分、方法以及测试性能单一等不足,提出在这些研究基础上进一步完善和创新工艺技术,并进行合理的组元和结构设计,深入研究多尺度强韧化C/C复合材料的高温力学性能及其增韧机制。
Carbon/carbon(C/C)composite has become a good candidate as an ultra-high temperature structural material for thermal structure in aerospace and other fields due to its low density and high temperature mechanical properties.However,conventional C/C composites cannot meet the application requirements of sharp thin-wall structure,because the pyrolytic carbon matrix is brittle and the single micron carbon fiber cannot effectively enhance the sharp thin-walled area.This paper reviews the preparation methods of nanotube/nanowire reinforced C/C composites and their effects on the structure and properties of the composites.The development status of introducing carbon nanotubes(CNTs),silicon carbide nanowires(SiCNWs)and hafnium carbide nanowires(HfCNWs)on the mechanical and ablative properties of C/C composites,as well as the toughening mechanism and ablation resistance mechanism of the composites are summarized.In view of the shortcomings of the composition,method and single test performance of the nanoreinforced material introduced at present,it is proposed to further improve and innovate the process technology on the base of these studies,and conduct reasonable component and structure design,so as to deeply study the high temperature mechanical properties and toughening mechanism of multi-scale toughened C/C composites.
作者
张雨雷
付艳芹
付前刚
宋强
ZHANG Yulei;FU Yanqin;FU Qiangang;SONG Qiang(Carbon/Carbon Composites Research Center,Northwestern Polytechnical University,Xi’an 710072,China)
出处
《航空材料学报》
EI
CAS
CSCD
北大核心
2021年第3期11-24,共14页
Journal of Aeronautical Materials
基金
国家自然科学基金(91860118,51727804,91860203)。
关键词
C/C复合材料
纳米增强
多尺度
热解碳
力学性能
carbon/carbon composites
nano-reinforced
multi-scale
pyrocarbon
mechanical performance