摘要
In this paper,we report the observed temporal correlation between extreme-ultraviolet(EUV)emission and magneto-acoustic oscillations in an EUV moss region,which is the footpoint region only connected by magnetic loops with million-degree plasma.The result is obtained from a detailed multiwavelength data analysis of the region with the purpose of resolving fine-scale mass and energy flows that come from the photosphere,pass through the chromosphere and finally heat the solar transition region or the corona.The data set covers three atmospheric levels on the Sun,consisting of high-resolution broad-band imaging at TiO 7057 A and the line of sight magnetograms for the photosphere,high-resolution narrowband images at helium 110830 A for the chromosphere and EUV images at 171 A for the corona.The10830 A narrow-band images and the TiO 7057 A broad-band images are from a much earlier observation on 2012 July 22 with the 1.6 meter aperture Goode Solar Telescope(GST)at Big Bear Solar Observatory(BBSO)and the EUV 171 A images and the magnetograms are from observations made by Atmospheric Imaging Assembly(AIA)or Helioseismic and Magnetic Imager(HMI)onboard the Solar Dynamics Observatory(SDO).We report the following new phenomena:(1)Repeated injections of chromospheric material appearing as 10830 A absorption are squirted out from inter-granular lanes with a period of~5 minutes.(2)EUV emissions are found to be periodically modulated with similar periods of~5 minutes.(3)Around the injection area where 10830 A absorption is enhanced,both EUV emissions and strength of the magnetic field are remarkably stronger.(4)The peaks on the time profile of the EUV emissions are found to be in sync with oscillatory peaks of the stronger magnetic field in the region.These findings may give a series of strong evidences supporting the scenario that coronal heating is powered by magneto-acoustic waves.
基金
supported by the National Natural Science Foundation of China(Grant Nos.11333009,11790302(11790300),11773061,11729301,11773072,11873027)
supported by NJIT and US NSF AGS-1821294 grant
partly supported by the Korea Astronomy and Space Science Institute
the Seoul National University
the Key Laboratory of Solar Activities of Chinese Academy of Sciences(CAS)
the Operation,Maintenance and Upgrading Fund of CAS for Astronomical Telescopes and Facility Instruments。