摘要
探究新冠疫情(COVID-19)下公众对“停课不停学”的情感演变趋势,有助于教育工作者面对公共危机时对线上教学准确定位和精准施策.本文通过梳理2020年2月1日至4月30日期间发表在微博上的短文本数据,引入面向共词网络的社团挖掘技术和基于Word2vec的话题分类模型,研究参与对象的情感特征和热议话题,并从时间和空间维度分析了公众情感演化特点和区域情感热度.结果表明,公众的情感变化呈现出先降低后升的趋势,总体表现出积极情绪;情感演变具有地域性,教育强省表现较为强烈.
Exploring the trend of public sentiment towards“classes suspended but learning continues”under the novel coronavirus(COVID-19).It is helpful for educators to make accurate positioning and strategies for online teaching in the public crisis incidents.This paper combs short comments data in Weibo from February 1 to April 30,2020,the emotional characteristics of the participants and hot topics are studied by the community mining technology for co-word networks and the topic classification model on Word2vec,and the characteristics of public emotional evolution and regional emotional enthusiasm are analyzed from the time(spatial)dimension.The results show that the public’s emotional changes show a trend of first decreasing and then increasing,showing positive emotions overall;emotional evolution is regionaland strong education provinces perform more strongly.
作者
赵洪凯
宋越
肖玉芝
冶忠林
ZHAO Hong-kai;SONG Yue;XIAO Yu-zhi;YE Zhong-lin(School of Computer,Qinghai Normal University,Xining 810016,China;Key Laboratory of Tibetan Information Processing and Machine Translation in QH,Xining 810008,China;Key Laboratory of the Education Ministry for Tibetan Information Processing,Xining 810008,China)
出处
《青海师范大学学报(自然科学版)》
2021年第1期26-36,共11页
Journal of Qinghai Normal University(Natural Science Edition)
基金
青海省科技厅项目(2020-GX-112)
国家自然科学基金项目(61763041)。
关键词
在线教育
情感分析
共词网络
社团挖掘
话题识别
online education
sentiment analysis
co-word network
community detection
topic identify