期刊文献+

主动式火灾光电探测信号基线漂移滤除和去噪方法研究 被引量:2

Research on the baseline drift filtering and denoising methods for active fire photoelectric detection signal
下载PDF
导出
摘要 针对数据中心机柜的主动式火灾光电探测报警系统降低误报率和提高检测精度的需求,设计极早期火灾探测腔体结构,完成光电检测数字电路硬件,采集光电信号,分别采用集合经验模态分解(EEMD)算法和小波分析算法来滤除低频基线漂移和降低背景白噪声。经过对比计算处理后信号的相关性和信噪比,结果表明,在本文所述数据采集密度下,EEMD方法的性能明显优于小波分析方法,可有效地降低误报率和提高检测精度,实现对火灾的“极早期”探测和预警。 In order to reduce the false alarm rate and improve the detection accuracy,aiming at the suction smoke sensor system of data center cabinet,a very early fire detection cavity structure was designed.The photoelectric detection digital circuit hardware was completed,and the photoelectric signal was collected.The ensemble empirical mode decomposition(EEMD)algorithm and wavelet analysis algorithm were used respectively to filter the baseline shift and reduce the background noise.After comparing and calculating the correlation and signalto-noise ratio,the results show that the performance of the EEMD method is significantly better than the wavelet analysis method,which can effectively reduce the false alarm rate and improve the detection accuracy,and realize the"very early"detection and warning of fire.
作者 刘欣 刘建翔 张国维 李绍鹏 薛莹 LIU Xin;LIU Jian-xiang;ZHANG Guo-wei;LI Shao-peng;XUE Ying(Institute of Automation,Qilu University of Technology(Shandong Academy of Sciences),Shandong Jinan 250014,China;School of Safety Engineering,China University of Mining and Technology,Jiangsu Xuzhou 221116,China)
出处 《消防科学与技术》 CAS 北大核心 2021年第4期544-547,共4页 Fire Science and Technology
基金 山东省科学院-威海市产学研协同创新项目(2020-CXY03) 山东省科学院-东营区产学研协同创新项目(2020-CXY27)。
关键词 火灾探测 基线漂移 数据中心机柜 光电信号 fire detection baseline drift data center cabinet photoelectric signal
  • 相关文献

参考文献3

二级参考文献22

  • 1张国璧.新一代哈龙替代灭火剂[J].消防科学与技术,2004,23(4):369-372. 被引量:27
  • 2董文辉,Larry M.流速检测技术在吸气式系统中的应用研究[J].消防科学与技术,2005,24(1):74-76. 被引量:5
  • 3TRACEY B H, MILLER E L. Nonlocal means denoising of ECG signals[J]. IEEE Trans Biomed Eng, 2012, 59 (9): 2383-2386.
  • 4WANG A D, LIU L, WEI Q. An adaptive morphologic filter applied to ECG denoising and extraction of R peak at real-time [J]. AASRI Procedia, 2012, 1: 474-479.
  • 5SMITAL L, VITEK M, KOZUMPLIK J, et al. Adaptive wavelet Wiener filtering of ECG signals [J]. IEEE Trans Bi- omed Eng, 2013, 60(2): 437-445.
  • 6SHARMA I. N, DANDAPAT S, MAHANTA A. ECG signal de-noising using higher order statistics in Wavelet sub bans [J]. Biomed Signal Process Control, 2010, 5(3) : 214-222.
  • 7PAI. S, MITRA M. Empirical mode decomposition based ECG enhancement and QRS detection [J]. Comput Biol Med, 2012, 42(19: 83-92.
  • 8KARAGIANNIS A, CONSTANTINOU P. Noise-assisted da- ta processing with empirical mode decomposition in biomedical signals[J]. IEEE Trans Inf Technol Biomed, 2011, 15 (1): 11-18.
  • 9CHANG K M, LIU S H. Gaussian noise filtering from ECG by wiener filter and ensemble empirical mode decomposition [J]. J Signal Process Syst, 2011, 64: 249-264.
  • 10WANG C L, ZHANG C L, ZHANG P T. Denoising algorithm based on wavelet adaptive threshold [J]. Physics Procesia, 2012, 24(Part A) : 678-685.

共引文献31

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部