期刊文献+

羟基修饰单层砷烯及锑烯的电子结构与光学性质 被引量:1

The Electronic Structure and Optical Properties of Hydroxylated Arsenene/Antimonene
下载PDF
导出
摘要 本工作采用基于密度泛函理论(DFT)的第一性原理平面波超软赝势方法,计算了单层砷烯和锑烯,以及羟基(-OH)表面修饰砷烯和锑烯的晶体结构、稳定性、电子结构和光学性质。计算结果表明:经过修饰后,砷烯及锑烯的晶格常数、键角、键长均变大,褶皱厚度变小,且均具有较好的稳定性。电子结构分析表明,羟基修饰后的砷烯及锑烯转变为狄拉克材料,拥有超高载流子迁移率,且能带结构具有较好的线性色散。光学性质显示,修饰后的砷烯及锑烯的吸收光谱明显红移,对太阳光谱的吸收效果明显增强,表明其在未来光电子设备等领域中具有广阔的应用前景。 Using the first principle calculation based on the density functional theory,we have systematically investigated the structure stability and electronic properties of arsenene,antimonene,As-OH and Sb-OH.The results show that the lattice constant,bond angle and bond length of arsenene and antimonene become larger after being chemically decorated,the buckling height becomes smaller,and both have better stability.The electronic structure analysis shows that the As-OH and Sb-OH are converted into Dirac materials,which have high carrier mobility and band structure with good linear dispersion.The optical properties show that the absorption spectra of the As-OH and Sb-OH are obviously red-shifted,and the absorption effect on the solar spectrum is obviously enhanced,indicating that it has good application prospects in the field of optoelectro-nic equipment in the future.
作者 方文玉 张鹏程 赵军 FANG Wenyu;ZHANG Pengcheng;ZHAO Jun(Public Health and Management School,Hubei University of Medicine,Shiyan 442000,China;School of Materials Science and Engineering,Hubei University,Wuhan 430062,China)
出处 《材料导报》 EI CAS CSCD 北大核心 2021年第10期10017-10022,共6页 Materials Reports
基金 湖北医药学院人才启动金项目(2018QDJZR22)。
关键词 砷烯 锑烯 电子结构 狄拉克材料 光学性质 arsenene antimonene electronic structure Dirac materials optical properties
  • 相关文献

参考文献3

二级参考文献31

  • 1李泓霖,张仲,吕英波,黄金昭,张英,刘如喜.2013.物理学报,62,047101.
  • 2Ryu, Y. R.; Zhu, S.; Budai, J. D.; Chandrasekhar, H. R.; Miceli, P. F.; White, H. W. a~ Appl. Phys. 2000, 88, 201. doi: 10.1063/ 1.373643.
  • 3Zhou, Z.; Komori, T.; Ayukawa, T.; Yukawa, H.; Morinaga, M.; Koizumi, A.; Takeda, Y. Appl. Phys. Lett. 2005, 87, 091109. doi: 10.1063/1.2035867.
  • 4Lang, J.; Han, Q.; Yang, J.; Li, C. 32 Appl. Phys. 2010, 107, 074302. doi: 10.1063/1.3318613.
  • 5Tang, Z. K.; Wong, G. K. L.; Yu, P.Appl. Phys. Lett. 1998, 72, 3270. doi: 10.1063/1.121620.
  • 6Shen, L.; Wu, R. Q.; Pan, H.; Peng, G. W.; Yang, M.; Sha, Z. D.; Feng, Y. P. Phys. Rev. B 2008, 78, 073306. doi: 10.1103/ PhysRevB.78.073306.
  • 7Perkins, C. L.; Lee, S. H.; Li, X. N.; Asher, S. E.; Coutts, T. J. J. Appl. Phys. 2005, 97, 034907. doi: 10.1063/1.1847728.
  • 8Xia. C. H.; Zhou, M.; Han, X. Y.; Yin, E F. Mater Rev. 2011, 25, 11.
  • 9Heo, S.; Sharma, S. K.; Lee, S.; Lee, Y.; Kim, C. M.; Lee, B.; Lee, H.; Kim, D. Y. Thin SolidFilms 2014, 558, 27. doi: 10.1016/j.tsf.2014.02.025.
  • 10Zheng, J. H.; Song, J. L.; Jiang, Q.; Lian, J. S.Appl. Surf. Sci. 2012, 258, 6735. doi: 10.1016/j.apsusc.2012.03.010.

共引文献26

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部