期刊文献+

对比教学模式下的分析力学课堂教学探讨

Discussion on the Classroom Teaching of Analytical Mechanics Based on Comparative Teaching Model
下载PDF
导出
摘要 近些年来,“分析力学”课程在大学工科院系的开课范围越来越大,但是鲜见以“分析力学”课程作为教学改革对象进行的研究。运用对比教学模式下的多层次理论,结合“分析力学”的课程特点,针对课程理论知识晦涩、内容体系与理论力学相关度高及应用程度低等问题,提出了教学实施方案。方案采用三种课堂对比的形式,通过联想对比的方式加深学生对知识点的理解,培养学生分析、评价及质疑的能力,从而达到培养创新人才的目的。 In recent years,the scope of the Analytical Mechanics course is becoming larger and wider in the department of engineering in universities,but the research on the course as the object of teaching reform is not much.Based on the multi-level theory under comparative teaching model and the characteristics of Analytical Mechanics,this paper puts forward a teaching implementation plan for the problems of obscure theoretical knowledge,high correlation between content system and theoretical mechanics and low application degree.The scheme adopts three forms of comparative classroom,and cultivates students’ability to analyze,evaluate and question by deepening students’mastery and update of the knowledge points through the way of association comparison in class,so as to achieve the purpose of training innovative talents.
作者 原亚南 尹颢 张作启 YUAN Ya-nan;YIN Hao;ZHANG Zuo-qi(School of Civil Engineering,Wuhan University,Wuhan,Hubei 430072,China)
出处 《教育教学论坛》 2021年第21期121-124,共4页 Education And Teaching Forum
关键词 分析力学 对比课堂 创新能力 质疑能力 Analytical Mechanics comparative classroom innovation ability questioning ability
  • 相关文献

参考文献4

二级参考文献13

  • 1何吉欢.Modified Lagrange Multiplier Method and Generalized Variational Principle in Fluid Mechanics[J].Advances in Manufacturing,1997(2):117-122. 被引量:1
  • 2陈滨著.分析动力学[M]. 北京大学出版社, 1987
  • 3Y. X. Guo,M. Shang,F. X. Mei.Poincare-Cartan Integral Invariants of Nonconservative Dynamical Systems[J]. International Journal of Theoretical Physics . 1999 (3)
  • 4Papastavridis JG.Analytical Mechanics. Journal of Women s Health . 2002
  • 5Hamel G.Theoretische Mechanik. Journal of Women s Health . 1949
  • 6Zhao Shiying.The differential geometric principles of Chetaev type nonholonomic mechanical systems. In: Proceeding of ICNM . 1985
  • 7Wang Keming.A differential geometry version on nonlinear nonholonomic mechanics. Proceedings of ICNM,Shanghai . 1985
  • 8Godbillon C.Geometrie Differentielle et Mecanique Analytique. Journal of Women s Health . 1969
  • 9Arnold VI.Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics . 1978
  • 10Santilli R M.Foundations of theoretical mechanics Ⅱ. Journal of Women s Health . 1983

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部