期刊文献+

公共交通方式对居民出行影响的Mix-Logit测度研究

Impact of Public Transport Properties on Residents Utility based on the Mix-Logit Model
下载PDF
导出
摘要 目的:为了探明居民公共出行特征,特别是公共交通方式特性对居民出行行为的影响程度。方法:以武汉市为例开展了一次居民公共出行意愿调查。结合武汉市公共交通现状,采用离散选择法设计调查问卷,开展基础数据调研,回收了490份有效问卷。首先,介绍了调查指标的选取、数据的处理与校对、出行效用Mix-Logit模型的待估参数;然后,对有效样本进行吉布斯采样生成马尔科夫链,用Metropolis-Hastings算法做蒙特卡洛仿真,从而获得一个符合现实出行选择的多元分布,采用双层贝叶斯估计法完成模型参数估计;最后,采用逐步回归法进行模型的检验。结果:经过3次逐步回归分析,得到了最大的回归方程显著性检验指数27.886,判断系数为0.738、拟合优度为0.766,说明模型参数标定较好。结论:居民出行费用的测度是出行时间的2.6倍,是出行舒适度的1.6倍,说明出行者敏感度最低的是出行费用属性。该模型可以应用在交通诱导方案制定、交通信息发布等领域,也可为公交(地铁)限时分阶段计价提供参考。 Objective:A survey of Wuhan residents’public willingness to travel is conducted to know about their public travel relevant characteristics,especially how the dynamic variation of public transport properties influences residents’travel behavior.Method:Based on the public transportation in Wuhan,discrete choice approach is applied to design questionnaire and carry out the basic data research,finally 490 valid questionnaires can be recycled.After introducing the choice of survey indicators,data processing and proofreading and parameters to be estimated of traveling efficacy Mix-Logit model,Gibbs sampling on valid samples to generate Markov chain,to obtain a multivariate distribution of realistic travel choice by using Metropolis-Hastings algorithm to progress Monte Carlo simulation,double Bayesian estimation method is used to complete model parameters estimation,finally using the stepwise regression method for inspection of the model.Results:The results show that the judgment coefficient is 0.738 and the goodness of fit is 0.738,which explains that model parameter calibration is better.The greatest significance test index regression equation 27.886 is obtained after 3 stepwise regression analyses.Conclusion:The coefficient of the property(cost of travel)is the largest,which shows that travel cost is the minimum sensitivity of traveler,measure of residents travel cost is 2.6 times of travel time and 1.6 times of travel comfort based on parameter calibration.The model not only can be applied in the field of traffic induction plan formulation and traffic information release etc.,but also can be the reference for bus(or subway)limit pricing.
作者 邓超 文香 马宽 刘港 贾安琪 DENG Chao;WEN Xiang;MA Kuan;LIU Gang;JIA An-qi(School of Automobile and Traffic Engineering,Wuhan University of Science and Technology,Wuhan 430081;Key Laboratory of Transportation Industry of“Detection,Diagnosis and Maintenance Technology of Transport Vehicles”,Jinan 250357,China)
出处 《物流工程与管理》 2021年第5期62-65,共4页 Logistics Engineering and Management
基金 武汉科技大学本科教学研究项目(2020X55、2019Z008) 国家自然科学基金青年科学基金项目(52002298) 湖北省自然科学基金计划青年项目(2020CFB118) 湖北省教育厅科学技术研究计划青年人才项目(Q20201107) “运输车辆检测、诊断与维修技术”交通行业重点实验室开放课题(JTZL1903) 湖北省大学生创新创业训练计划项目(S202010488060) 武汉科技大学大学生创新创业训练计划项目(20ZA099)。
关键词 智能交通 测度 效用函数 Mix-Logit模型 居民出行行为 双层贝叶斯估计 SP调查 intelligent transportation measure utility function Mix-Logit model residential travel behavior Double Bayesian estimation SP survey
  • 相关文献

参考文献5

二级参考文献91

  • 1康文峰,孙宝.基于主成分法优化的轨道交通通勤出行方式选择研究[J].交通信息与安全,2013,31(3):74-78. 被引量:3
  • 2朱永利,王艳,耿兰芹,苏丹.基于贝叶斯网络的电网故障诊断[J].电力自动化设备,2007,27(7):33-37. 被引量:17
  • 3Pearl J F. Propagation and structuring in belief networks[J]. Artificial Intelligence, 1986, 29 (3): 241 - 288.
  • 4Lauritzen S L, Spiegelhalter D J. Local computations with probabilities on graphical structures and their application to expert systems (with discussion)[J]. Journal of the Royal Statistical Society Series B, 1988, 50(2) :157 - 224.
  • 5Shenoy P, Shafer G. Axioms for probability and belief- function propagation / readings in uncertain reasoning [M]. Porland, USA: Morgan Kaufmann Publishers Inc, 1990:575 - 610.
  • 6Hugin Expert. The leading decision support tool [EB/ OL]. [2012 09-12]. http://www, hugin, com.
  • 7Murphy K. Software packages for graphical models- bayesian networks [EB/OL]. [2012-09-12]. http: /// www. cs. ube. ca/ murphyk/Bayes/bnsoft, html.
  • 8Koller D, Pfeffer A. Object-oriented Bayesian networks [C]//Proceedings of the 13th Annual Conference on Uncertainty in Artificial Intelligence. Providence, Rhode Island: Es.n.], 1997:302-313.
  • 9Fenton N E. The SERENE method manual (safety and risk evaluation using bayesian NEts), EC Project No. 22187 SERENE, SERENE/5.3/CSR/3053/R/1 [ EB/ OL]. [2012-09-12]. www. dcs. qnml. ac. uk/norman/ Daers/serene. Ddf.
  • 10Neil M, Fenton N E, Nielsen L. Building large-scale Bayesian networks E J. The Knowledge Engineering Review, 2000,15(3) :257 - 284.

共引文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部