摘要
该文研究R^(3)上的可压缩Navier-Stokes-Korteweg方程组的Cauchy问题.通过选取特殊的Korteweg张量,证明了该方程组在某类大初值下存在整体解.这里的“大”是指初始速度和初始涡度的第三分量的L^(∞)范数都可以任意大.
In this paper,we consider the Cauchy problem to the tri-dimensional compressible Navier-Stokes-Korteweg system with a specific choice on the Korteweg tensor in R^(3),and construct the global solutions to the tri-dimensional Navier-Stokes-Korteweg equations with a class of of large initial data,where the L^(∞)norm of the initial velocity and the third component of initial vorticity could be arbitrarily large.
作者
于洋海
李金禄
吴星
Yu Yanghai;Li Jinlu;Wu Xing(School of Mathematics and Statistics,Anhui Normal University,Anhui Wuhu 241002;School of Mathematics and Information Science,Guangzhou University,Guangzhou 510006;School of Mathematics and Computer Sciences,Gannan Normal University,Jiangxi Ganzhou 341000;College of Information and Management Science,Henan Agricultural University,Zhengzhou 450002)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2021年第3期629-641,共13页
Acta Mathematica Scientia
基金
安徽省自然科学基金(1908085QA05)
安徽师范大学博士科研启动基金、国家自然科学基金(11801090)
中国博士后科学基金(2020T130129,2020M672565)。