期刊文献+

纳米颗粒对盐梯度太阳池热性能影响的实验研究 被引量:3

Experimental study on the effect of nanoparticles on thermal properties of salt-gradient solar pond
原文传递
导出
摘要 为了增强太阳池的储热温度以及热效率,采用了在太阳池下对流层添加纳米颗粒的方法。通过光照实验与沉降实验选取质量分数为0.010%的碳纳米管溶液添加到太阳池的下对流层,然后与普通盐梯度太阳池进行对比实验,并对实验数据进行分析、计算。实验结果表明:在相同模拟光源下,含纳米颗粒小型太阳池的下对流层平均温度提高了1.7℃,效率是普通太阳池的1.2~1.4倍,由此证明了添加纳米颗粒可以有效提高太阳池的储热温度和热效率;通过对太阳池各层盐浓度的测量,验证了纳米颗粒对太阳池的浓度梯度并未造成明显影响,太阳池的稳定性保持良好。 In order to enhance the heat storage temperature and thermal efficiency of the solar pond, nanoparticles were added to the lower convective zone(LCZ) of the solar pond. The carbon nanotube solution with a mass fraction of 0.010% was selected as the LCZ of the solar pond by light and sedimentation experiments. The experimental data were analyzed and compared with those of ordinary salt gradient solar pond. The results show that under the same simulated light source, the average temperature of the solar pond convective zone containing nanoparticles increases by 1.7 ℃, which is 1.2-1.4 times that of the ordinary solar pond. It is proved that adding nanoparticles can effectively improve the heat storage temperature and thermal efficiency of the solar pond. By measuring the salt concentration in each layer of the solar pond, it is verified that the concentration gradient of the solar pond is not significantly affected by the nanoparticles. The stability of the solar pool remains good.
作者 李楠 王庆 刘佳伟 张财红 LI Nan;WANG Qing;LIU Jiawei;ZHANG Caihong(College of Vehicles and Energy,Yanshan University,Qinhuangdao 066004,China)
出处 《热科学与技术》 CAS CSCD 北大核心 2021年第2期122-127,共6页 Journal of Thermal Science and Technology
基金 河北省自然科学基金资助项目(E2019203527) 河北省教育厅重点资助项目(ZD2018062)。
关键词 太阳池 碳纳米管溶液 温度梯度 热效率 稳定性 solar pond carbon nanotube solution temperature gradient thermal efficiency stability
  • 相关文献

参考文献7

二级参考文献35

  • 1白敏丽,李国杰,吕继组,崔文政,刘浩,李晓杰.纳米通道内纳米流体流动特性的分子动力学模拟[J].热科学与技术,2012,11(3):189-194. 被引量:12
  • 2刘俊红,顾建明,刘辉,董东甫.纳米级固体颗粒应用于热管的试验研究[J].核动力工程,2005,26(3):268-271. 被引量:14
  • 3Iijima S. Helical Microtubules of Graphitic Carbon. Nature, 1991, 354:56-58
  • 4Berber S, Kwon Y K, Tomanek D. Unusually High Thermal Conductivity of Carbon Nanotubes. Phys. Rev. Lett., 2000, 84(20): 4613-4616
  • 5Cao J X, Yan X H, Xiao Y, et al. Thermal Conductivity of Zigzag Single-Walled Carbon Nanotubes: Role of the Umklapp Process. Phys. Rev. B, 2004, 69:073407
  • 6Mingo N, Broido D A. Length Dependence of Carbon Nanotube Thermal Conductivity and the "Problem of Long Waves". Nanoletters, 2005, 5(7): 1221-1225
  • 7Yamamoto T, Watanabe S, Watanabe K. Universal Features of Quantized Thermal Conductance of Carbon Nanotubes. Phys. Rev. Lett., 2004, 92:075502
  • 8Yan X H, Xiao Y, Li Z M. Effects of Intertube Coupling and Tube Chirality on Thermal Transport of Carbon Nanotubes. J. Appl. Phys., 2006, 99:124305
  • 9Yan H, Zhang X. Thermal Conductivity of Individual Multiwalled Carbon Nanotubes in Low Temperature. In: The Eighteenth International Symposium on Transport Phenomena. Daejeon(KOREA): 2007
  • 10Fujii M, Zhang X, Xie H, et al. Measuring the Thermal Conductivity of a Single Carbon Nanotube. Phys. Rev. Lett., 2005, 95:065502

共引文献24

同被引文献29

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部