期刊文献+

旋流预混燃烧室燃烧特性研究 被引量:7

Investigation on combustion characteristics of swirl premixed combustor
原文传递
导出
摘要 以某型燃烧室为研究对象,采用RANS(Reynolds average navier-stokes)和LES(large eddy simulation)两种方法进行数值模拟,并对两种数值方法的模拟结果进行了对比分析。研究结果表明,RANS的计算结果能够反应燃烧场中的主要流场特征,具有一定的工程意义。LES能够复现弱轴向流动区等具体的流场细节,对剪切层位置和强度模拟较准确,还能模拟火焰动态发展过程,捕捉燃烧流场动态特性。与RANS相比,在燃烧流场数值仿真方面,LES占据更明显的优势。经计算,该工况下进动涡核由三个相对独立的螺旋涡分支组成,在燃烧室激起周期性速度脉动和压力脉动,LES捕捉到进动涡核主频率为156 Hz。 The numerical simulations are carried out by RANS(Reynolds Average Navier-Stokes) and LES(Large Eddy Simulation) to investigate the performance of a combustor. The research results show that RANS can reappear the main flow field characteristics in the combustion field, and it has some engineering significance. The LES can reproduce specific flow field details such as the weak central recirculation region, show the shear layer position and strength accurately, and perform continuous sequential dynamic calculation to exhibit the dynamic development process of the flame. Compared with RANS, LES has a more obvious advantage in numerical simulation of combustion flow field. The results show that the precesing vortex core is composed of three relatively independent spiral vortex branches under this condition, and it excites a periodic velocity and pressure pulsation in the combustor. The main frequency of the precessing vortex core captured by the LES is 156 Hz.
作者 张志浩 刘潇 赵铁铮 刘刚 吕光普 郑洪涛 ZHANG Zhihao;LIU Xiao;ZHAO Tiezheng;LIU Gang;Lü Guangpu;ZHENG Hongtao(College of Power and Engergy Engineering,Harbin Engineering University,Harbin 150001,China)
出处 《热科学与技术》 CAS CSCD 北大核心 2021年第2期171-177,共7页 Journal of Thermal Science and Technology
基金 国家科技重大专项资助项目(2017-III-0006-0031) 中央高校基本科研业务费专项资金资助项目(3072019CFJ0307)。
关键词 旋流预混燃烧室 部分预混燃烧 大涡模拟 进动涡核 swirl premixed combustion chamber partial premixed combustion large eddy simulation precessing vortex core
  • 相关文献

参考文献2

二级参考文献21

  • 1王海峰,陈义良,刘明侯.湍流扩散燃烧的数值研究—PDF方法和火焰面模型的性能比较[J].工程热物理学报,2005,26(z1):241-244. 被引量:9
  • 2穆勇,郑洪涛,李智明,杨家龙.燃气轮机双燃料燃烧室流场对比数值研究[J].航空动力学报,2009,24(9):1937-1944. 被引量:6
  • 3MCDONALD C F, WILSONT D G. Utilization of recuperated and regenerated engine cycles for high- efficiency gas turbines in the 21st century[J]. Appl Therm Eng, 1996,16 : 635-653.
  • 4JANES J. Chemical recuperated gas turbine[R]. California Energy Commisson Staff Report P500-92-015, Sacramento, CA, 1992.
  • 5PRIETO M G S, NEBRA S A, GALLO W L R. Exergetic analysis of a gas turbine plant with chemical recuperation[C]// Proc of ENCIT-8th Brazilian Cong of Therm Eng and Sci, Porto Alegre, Brazil, 2000 : 1-10.
  • 6HARVEY S, KANE N D. Analysis of a reheat gas turbine cycle with chemical recuperation using ASPEN[J]. Energy Convers, & Mgmt, 1998,38(15- 17) : 1671-1679.
  • 7YAKHOT V, ORZAG S A. Renormalization group analysis of turbulence: physical aspects and research trends[J]. Acta Mechanica, 2001,17 (4) : 289-201.
  • 8熊燕,张永良,季路成,等.中低热值合成气燃气轮机燃烧室数值模拟[C].中国工程热物理学会2008年燃烧学学术会议-084289,西安,2008.
  • 9崔玉峰,徐刚,聂超群,等.湍流燃烧模型对合成气燃烧室模拟结果的影响[C].中国工程热物理学会燃烧学学术会议-064010,南京,2006.
  • 10HAMMER A J, ROBY R J. CFD modeling of a gas turbine combustor using reduced chemical kinetic mechanics [R]. AIAA-97-3242. [S. l. ]: AIAA, 1997.

共引文献31

同被引文献30

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部