期刊文献+

Temperature Dependent Thermal and Elastic Properties of High Entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2):Molecular Dynamics Simulation by Deep Learning Potential 被引量:8

原文传递
导出
摘要 High entropy diborides are new categories of ultra-high temperature ceramics,which are believed promising candidates for applications in hypersonic vehicles.However,knowledge on high temperature thermal and mechanical properties of high entropy diborides is still lacking unit now.In this work,variations of thermal and elastic properties of high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2) with respect to temperature were predicted by molecular dynamics simulations.Firstly,a deep learning potential for Ti-Zr-Hf-Nb-Ta-B diboride system was fitted with its prediction error in energy and force respectively being 9.2 meV/atom and 208 meV/A,in comparison with first-principles calculations.Then,temperature dependent lattice constants,anisotropic thermal expansions,anisotropic phonon thermal conductivities,and elastic properties of high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2) from 0℃to 2400℃were evaluated,where the predicted room temperature values agree well with experimental measurements.In addition,intrinsic lattice distortions of(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2) were analyzed by displacements of atoms from their ideal positions,which are in an order of 10^(-3) A and one order of magnitude smaller than those in(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C.It indicates that lattice distortions in(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2) is not so severe as expected.With the new paradigm of machine learning potential,deep insight into high entropy materials can be achieved in the future,since the chemical and structural complexly in high entropy materials can be well handled by machine learning potential.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第13期8-15,共8页 材料科学技术(英文版)
基金 supported by Natural Sciences Foundation of China under Grant No.51972089 and No.51672064。
  • 相关文献

参考文献1

二级参考文献7

共引文献23

同被引文献105

引证文献8

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部