期刊文献+

New strategy to delay food spoilage:Application of new food contact material with antibacterial function 被引量:2

原文传递
导出
摘要 Frequent food poisoning and food-borne diseases outbreaking in recent years have caused people to attach great attention to food safety,especially the food contact materials that are essential in the food industrial chains and daily lives,ensuring their clean sanitation are of great importance in blocking microbial contamination and spread of food-borne pathogens.Stainless steel(SS)is one of the most accepted and widely used food contact material,and the Cu-bearing SS possesses excellent antibacterial performance and maintains the original mechanical properties of SS,maybe making it a better substitute for the conventional SS in the food area.Taking advantages of bactericidal and antifouling properties of Cubearing SS,this study simulated a variety of food contact scenarios,explored a new strategy for food preservation and food safety by using Cu-bearing SS as a food contact material.The results showed that the Cu-bearing SS could not only delay the spoilage of different foods by inhibiting the activity of microorganisms in foods,but also reduce the expressions of spoilage traits of bacteria as well as the formation of biofilms by quenching the quorum-sensing signals,and further creating a good bacteriostatic atmosphere for the contacted food and its surrounding environment.In addition,the remarkable antifouling property of Cu-bearing SS would give the material a self-cleaning feature for food applications,which can avoid secondary contamination of food as a source of contamination.This study well demonstrates that the Cu-bearing SS has broad application potentials and prospects in the food area.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第11期59-66,共8页 材料科学技术(英文版)
基金 financially supported by the National Natural Science Foundation of China(Nos.51631009 and 51771199) the National Key Research and Development Program of China(No.2016YFB0300205) the Foshan Science and Technology Program(No.2017AG100041) Youth Innovation Promotion Association(No.2018221)。
  • 相关文献

同被引文献29

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部