期刊文献+

深度学习方法在糖尿病视网膜病变诊断中的应用 被引量:21

Applications of Deep Learning Techniques for Diabetic Retinal Diagnosis
下载PDF
导出
摘要 深度学习可以有效提取图像隐含特征,在医学影像识别方面的应用快速发展.由于糖尿病视网膜病变(Diabetic retinopathy,DR)诊断标准明确、分类体系成熟,应用深度学习诊断糖尿病视网膜病变近年来成为研究热点.本文从深度学习方法在DR诊断中的最新研究进展、DR诊断的一般流程、公共数据集、医学影像标注方法、主要实现模型、面临的主要挑战几方面,对深度学习方法在糖尿病视网膜病变诊断中的应用进行了详细综述,便于更多机器视觉、尤其是深度学习医学影像的研究者们参照对比,加快该领域研究的成熟度和临床落地应用. Deep learning can effectively extract the hidden features of image and its application in medical image recognition is developing rapidly.Due to the clear diagnostic criteria for diabetic retinopathy(DR)and the mature classification system,the application of deep learning to diagnose diabetic retinopathy has become a research hotspot in recent years.Therefore,this paper reviews the application of deep learning methods in the diagnosis of diabetic retinopathy detailedly based on the latest research progress of deep learning for DR diagnosis,the general flow for DR diagnosis,public dataset,medical image annotation method,main models and major challenges.It brings convenience for more researchers of computer vision deepling learning,especially medical imaging deep learning,to speed up the research maturity and clinical application in this field.
作者 范家伟 张如如 陆萌 何佳雯 康霄阳 柴文俊 石珅达 宋美娜 鄂海红 欧中洪 FAN Jia-Wei;ZHANG Ru-Ru;LU Meng;HE Jia-Wen;KANG Xiao-Yang;CHAI Wen-Jun;SHI Shen-Da;SONG Mei-Na;E Hai-Hong;OU Zhong-Hong(School of Computer Science,Beijing University of Posts and Telecommunications,Beijing 100089;Information Network Engineering Research Center,Ministry of Education(Beijing University of Posts and Telecommunications),Beijing 100089)
出处 《自动化学报》 EI CAS CSCD 北大核心 2021年第5期985-1004,共20页 Acta Automatica Sinica
基金 教育部信息网络工程研究中心资助项目资助。
关键词 深度学习 糖尿病 糖尿病视网膜病变 智能诊断 图像标注 病变区域检测 病变等级分类 Deep learning diabetes mellitus(DM) diabetic retinopathy(DR) intelligent diagnosis image annotation lesions detection lesions classification
  • 相关文献

参考文献10

二级参考文献53

  • 1谌志群,张国煊.文本挖掘研究进展[J].模式识别与人工智能,2005,18(1):65-74. 被引量:49
  • 2杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:190
  • 3Nettleton DO,Einolf HJ. Assessment of cytochrome p450 enzyme inhibition and inactivation in drug discovery and development [ J ]. Curr Top Med Chem,2011,11 (4) :382 - 403.
  • 4Foti RS, Wienkers LC, Wahlstrom JL. Application of cytochrome P450 drug interaction screening in drug discovery [ J ]. Comb Chem High Throughput Screen ,2010,13 (2) : 145 - 158.
  • 5DeLisle RK, Otten J, Rhodes S. In silico modeling of p450 sub- strates, inhibitors, activators, and inducers [ J ]. Comb Chem High Throughput Screen, 2011,14 ( 5 ) : 396 - 416.
  • 6Gleeson MP. Generation of in-silico cytochrome P450 1 A2,2C9, 2C19,2D6, and 3A4 inhibition QSAR models [ J ]. J Comput Aided Mol Des ,2007,21 ( 10/11 ) :559 - 573.
  • 7Kontijevskis A, Komorowski J, Wikberg JES. Generalized proteo- chemometric model of multiple cytochrome P450 enzymes andtheir inhibitors [ J ]. J Chem Inf Model, 2008,48 ( 9 ) : 1 840 - 1 850.
  • 8Mishra NK. Computational modeling of P450s for toxicity predic- tion[ J ] . Expert Opin Drug Metab Toxicol,2011,7 ( 10) : 1 211 - 1 231.
  • 9Roy K, Roy PP. QSAR of cytochrome inhibitors [ J ]. Expert Opin Drug Metab Toxicol,2009,5( 10 ) :1 245 -1 266.
  • 10Zhou SF, Yang LP, Zhou ZW, et al. Insights into the substrate specificity, inhibitors, regulation, and polymorphisms and the clinical impact of human cytochrome P450 1A2 [ J]. AAPS J, 2009,11(3) :481 -494.

共引文献323

同被引文献193

引证文献21

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部