期刊文献+

基于区块自适应特征融合的图像实时语义分割 被引量:10

Real-time Image Semantic Segmentation Based on Block Adaptive Feature Fusion
下载PDF
导出
摘要 近年来结合深度学习的图像语义分割方法日益发展,并在机器人、自动驾驶等领域中得到应用.本文提出一种基于区块自适应特征融合(Block adaptive feature fusion,BAFF)的实时语义分割算法,该算法在轻量卷积网络架构上,对前后文特征进行分区块自适应加权融合,有效提高了实时语义分割精度.首先,分析卷积网络层间分割特征的感受野对分割结果的影响,并在跳跃连接结构(SkipNet)上提出一种特征分区块加权融合机制;然后,采用三维卷积进行层间特征整合,建立基于深度可分离的特征权重计算网络.最终,在自适应加权作用下实现区块特征融合.实验结果表明,本文算法能够在图像分割的快速性和准确性之间做到很好的平衡,在复杂场景分割上具有较好的鲁棒性. Recently,image semantic segmentation has made great progress with deep learning,which benefits robotics and automatic driving vehicle.This paper proposes a real-time semantic segmentation algorithm based on block adaptive feature fusion(BAFF).Under the framework of a light convolutional network,a block adaptive feature fusion algorithm is proposed in the context-embedding module,to improve the accuracy of real-time semantic segmentation.First,the problem caused by the different size of receptive field in layers is analyzed,and a feature fusion mechanism with block weight is presented on SkipNet.Then,layers'feature integration is carried on by three-dimension convolution.The feature-weights are calculated by an additional network with depthwise-separable-convolutions(DSC).Finally,the features are fused under adaptive weights.Experiments show that this method obtains excellent segmentation results with a good balance between rapidity and accuracy and owns robustness on segmentation of complex scenes.
作者 黄庭鸿 聂卓赟 王庆国 李帅 晏来成 郭东生 HUANG Ting-Hong;NIE Zhuo-Yun;WANG Qing-Guo;LI Shuai;YAN Lai-Cheng;GUO Dong-Sheng(College of Information Science and Engineering,National Huaqiao University,Xiamen 361021,China;Institute for Intelligent Systems,University of Johannesburg,Johannesburg 2146,South Africa;the Hong Kong Polytechnic University,Hong Kong 999077,China)
出处 《自动化学报》 EI CAS CSCD 北大核心 2021年第5期1137-1148,共12页 Acta Automatica Sinica
基金 国家自然科学基金(61403149) 华侨大学中青年教师科研提升资助计划项目(ZQN-PY408,Z14Y0002) 华侨大学研究生科研创新基金(17013082039)资助。
关键词 深度学习 实时语义分割网络 区块自适应特征融合 跳跃连接结构 Deep learning real-time semantic segmentation network block adaptive feature fusion(BAFF) SkipNet
  • 相关文献

参考文献2

二级参考文献37

  • 1罗炳伟,余沪涛,江晓.细胞图像分割的新方法[J].电子科技大学学报,1990,19(1):54-59. 被引量:4
  • 2任洪娥,徐海涛.一种基于链码技术的图像目标物体面积统计新方法[J].计算机应用研究,2008,25(1):303-305. 被引量:5
  • 3杨万扣,任明武,杨静宇.数字图像中基于链码的目标面积计算方法[J].计算机工程,2008,34(1):30-33. 被引量:10
  • 4Golomb B A, Lawrence D T, Sejnowksi T J. SEXNET: a neural network identifies sex from human faces. In: Proceed- ings of Advances in Neural Information Processing Systems (NIPS). Colorado, USA: Morgan Kaufmann Publishers Inc., 1991. 572-579.
  • 5Brunelli R, Poggio T. HyberBF networks for gender classi- fication. In: Proceedings of the 1992 DARPA Image Under- standing Workshop, Detroit, USA, 1992. 311-314.
  • 6Tamura S, Kawai H, Mitsumoto H. Male/female identifi- cation from 8x6 very low resolution face images by neural network. Pattern Recognition, 1996, 29(2): 331-335.
  • 7Jiao Y B, Yang J C, Fang Z J, Xie S J, Park D S. Comparing studies of learning methods for human face gender recogni- tion. In: Proceedings of the 7th Chinese Conference on Bio- metric Recognition (CCBR). Guangzhou, China: Springer, 2012.67-74.
  • 8Verma A, Vig L. Using convolutional neural networks to discover cogntively validated features for gender classifica- tion. In: Proceedings of the 2014 International Conference on Soft Computing and Machine Intelligence (SCMI). New Delhi, India: IEEE, 2014. 33--37.
  • 9Hinton G E, Salakhutdinov R R. Reducing the dimensional- ity of data with neural networks. Science, 2006, 313(5786): 504-507.
  • 10Tivive F H C, Bouzerdoum A. A gender recognition system using shunting inhibitory convolutional neural networks. In: Proceedings of the 2006 IEEE International Joint Confer- ence on Neural Networks (IJCNN). Vancouver, BC: IEEE. 2006. 5336-5341.

共引文献44

同被引文献43

引证文献10

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部