期刊文献+

结合深度神经网络的高分辨遥感影像滑坡检测 被引量:4

Landslide Detection from High-resolution Remote Sensing Image using Deep Neural Network
原文传递
导出
摘要 利用遥感影像快速、高效地检测滑坡区域在抢险救援、风险评估等方面发挥着重要的作用。提出了多尺度特征融合的深度神经网络框架用于高分辨遥感影像滑坡自动检测。首先,该框架利用ResNet网络对遥感影像进行筛选,选出具有滑坡区域的候选影像。接着将含有滑坡区域的候选遥感影像输入到多尺度神经网络中对滑坡区域进行分割,从而精准地定位滑坡位置。利用开源数据集和自制数据集对模型进行了训练,并在都香高速公路沿线正射遥感影像上测试。结果表明,该方法在测试区域的滑坡检测总体精度为88.55%,召回率为85.52%。提出的深度神经网络框架能够提取不同尺度的滑坡区域,削弱了与滑坡无关因素的影响,有效提高了高分辨遥感影像滑坡检测的精度。 Quickly and efficiently detect landslide areas by mean of remote sensing images plays an important role in emergency rescue and risk assessment.In this paper,a multi-scale feature fusion deep neural network framework for automatic detection of landslides in high-resolution remote sensing images is proposed.First,the framework uses the ResNet network to screen remote sensing images and select candidate images with landslide areas.Then the candidate remote sensing image containing the landslide area is brought into the multi-scale neural network to segment the landslide area,so as to accurately locate the landslide location.The model is trained using open source data sets and self-made data sets,and tested on orthophotos along the Duyun-Shangri-La Expressway.The results show that the overall accuracy of this method for landslide detection in the test area is 88.55%,and the recall rate is 85.52%.The deep neural network framework proposed in this paper can extract landslide areas of different scales,weaken the influence of factors unrelated to landslides,and effectively improve the accuracy of high-resolution remote sensing image landslide detection.
作者 张蕴灵 傅宇浩 孙雨 曾豆豆 许泽然 吴杭彬 ZHANG Yun-ling;FU Yu-hao;SUN Yu;ZENG Dou-dou;XU Ze-ran;WU Hang-bin(China Highway Engineering Consultants Corporation,Beijing 100097,China;Research and Development Center of Transport Industry of Spatial Information Application and Disaster Prevention and Mitigation Technology,Beijing 100097,China;CHECCData Co.Ltd.,Beijing 100097,China;School of Surveying and Geoinfomatics,Tongji University,Shanghai 200092,China)
出处 《公路》 北大核心 2021年第5期188-194,共7页 Highway
基金 空间信息应用与防灾减灾技术交通运输行业研发中心、中国公路工程咨询集团有限公司科技研发项目,项目编号XS-2018-007 国家高分辨率对地观测系统重大专项,项目编号07-Y30B03-9001-19/21 交通运输行业重点科技项目、中国交建重大科技研发项目,项目编号2018-ZJKJ-20。
关键词 滑坡 高分辨遥感影像 深度卷积神经网络 landslide high-resolution remote sensing image deep convolutional neural network
  • 相关文献

参考文献3

二级参考文献35

  • 1苏凤环,刘洪江,韩用顺.汶川地震山地灾害遥感快速提取及其分布特点分析[J].遥感学报,2008,12(6):956-963. 被引量:76
  • 2宫鹏,黎夏,徐冰.高分辨率影像解译理论与应用方法中的一些研究问题[J].遥感学报,2006,10(1):1-5. 被引量:136
  • 3Franco Mantovani, Robert Soeters, Westen C J Van. Remote sensing techniques for landslide studies and hazard zonation in Europe [ J] Geomorphology, 1996, 15:213-225.
  • 4Leonhard Johannes Blesius. Leonardo: a satellite based methodology for landslide susceptibility mapping incorporating geotechnieial slope stability parameters [ D]. The University of Iowa, 2002.
  • 5Nichol J, Wong M S. Satellite remote sensing for detailed landslide inventories using change detection and image fusion [ J]. International journal of remote sensing, 2005, 26(9) : 1913 -1926.
  • 6Giles P, Franklin S E. An authomated approach to the classification of slope units using digital data [ J ]. Geomorphology, 1998, 21 : 251 -264.
  • 7Barlow J, Martin Y, Franlin S E. Detecting translational landslide scars using segmentation of Landsat ETM + and DEM data in the northern Cascade Mountains, British Columbia [ J]. Canadian journal of remote sensing, 2003, 29:510 -517.
  • 8Martin Y E, Franklin S E. Classification of soil- and bedrock-dominated landlsides in British Colunbia using segmentation of satellite imagery and DEM data [ J]. International journal of remote sensing, 2005, 26 (7) : 1505 - 1509.
  • 9Benz U C, Peter H, Gregor W, et al. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information [ J]. ISPRS journal of photogrammetry & remote sensing, 2004, 58 : 239 - 258.
  • 10胡德勇,李京,陈云浩,张锦水.GIS支持下滑坡灾害空间预测方法研究[J].遥感学报,2007,11(6):852-859. 被引量:42

共引文献50

同被引文献48

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部