期刊文献+

Inverse methodology as applied to reconstruct local textile features from measured pressure field

原文传递
导出
摘要 One can compute the final deformation of a known geometry under specific boundary conditions using the constitutive laws of mechanics that describe their stress strain behavior.In such cases the initial geometry is known,and all operators mapping the deformation are defined on the reference domain.However,there are situations in which the final configuration of a deformation might be known but not the initial.The inverse formulation allows one to determine the initial geometry of a domain,given its final deformation state,the material behavior law and a set of boundary conditions.In the present work we propose a method to reconstruct the mesoscale geometry of a textile based on its mechanical response during compaction.To do so,stress boundary conditions are acquired by means of a pressuresensitive film.By adopting an appropriate material law,the thickness and width information of the yarns are deduced from the pressure field experienced by the compacted textile.Unlike 3 D scanning techniques such as-CT,the proposed method can be applied on any domain size,allowing long-range variability to be captured.To the best of the authors’knowledge,there are no previous works that use a pressure-sensitive film on a large domain to capture the input data for a shape reconstruction.This example application serves as a demonstration of a methodology which could be applied to other classes of materials.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第12期241-247,共7页 材料科学技术(英文版)
基金 partially funded by Conseil Regional Pays de la Loire(grant number TEU29)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部