期刊文献+

Laser-based directed energy deposition of novel Sc/Zr-modified Al-Mg alloys:columnar-to-equiaxed transition and aging hardening behavior 被引量:4

原文传递
导出
摘要 The control of grain morphology is important in laser additive manufacturing(LAM),as grain morphology further affects the hot cracking resistance,anisotropy,and strength–ductility synergy of materials.To develop a solidification-control solution and achieve columnar-to-equiaxed transition(CET)in Al-based alloys during LAM,Sc-and-Zr-modified Al-Mg alloys were processed via directed energy deposition(DED).CET was achieved by introducing high potent primary Al_(3)(Sc,Zr)nucleation sites ahead of the solidification interface.Furthermore,the relationship between the solidification control parameters and precipitation behavior of primary Al_(3)(Sc,Zr)nucleation sites was established using the time-dependent nucleation theory.Then,the CET was studied according to the Hunt criterion.The results indicated that coarse columnar grain structure was still obtained at the inner region of the molten pool at low Sc/Zr contents owing to the effective suppression of the precipitation of the primary Al_(3)(Sc,Zr)nucleation sites via rapid solidification during DED.In addition,the relatively low melt temperature at the fusion boundary unavoidably promoted the precipitation of primary Al_(3)(Sc,Zr)nucleation sites,which resulted in a fine equiaxed grains band at the edge of the molten pool.As the Sc/Zr content increased,the solidification cooling rate was not sufficient to suppress the precipitation of the primary Al_(3)(Sc,Zr)nucleation sites,and a fully equiaxed grain structure was obtained.Furthermore,the effect of the layer-by-layer manufacturing process on the subsequent precipitation strengthening of secondary Al_(3)(Sc,Zr)precipitates was discussed.Both the remelting and subsequent aging during thermal cycling should be considered to achieve greater precipitation strengthening.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第10期168-179,共12页 材料科学技术(英文版)
基金 the Project from the National Key Research and Development Program of China(Nos.2016YFB1100100 and 2018YFB1106300)。
  • 相关文献

同被引文献32

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部