期刊文献+

基于碳纳米管修饰的DNA电化学传感器用于大肠杆菌基因片段检测 被引量:2

Determination of E.coli DNA gene fragment by DNA electrochemical aptasensor based on MWCNTs
原文传递
导出
摘要 利用全氟代磺酸脂(Nafion)的成膜效应将多壁碳纳米管(MWCNTs)固定在玻碳电极(GCE)上,制得MWCNTs/Nafion/GCE修饰电极。利用MWCNTs上的羧基和大肠杆菌DNA探针上修饰的氨基之间的酰化反应将探针固定在电极上,大肠杆菌目标DNA与固定于电极表面的DNA探针杂交后,电极表面的电子传递电阻变大,从而实现大肠杆菌目标DNA基因片段的测定。通过电化学循环伏安法(CV)和交流阻抗法(EIS)对所制备的传感器的灵敏度和选择性进行表征,在优化条件下,检测大肠杆菌基因片段的线性范围为10 pmol/L~1.0μmol/L,检出限为6.3 pmol/L,相关系数R2=0.9965。 A sensitive electrochemical impedance spectroscopy(EIS)biosensor was designed for the detection of the target E.coli DNA gene fragment based on the aptamer and carboxylated multi-walled carbon nanotubes(MWCNTs).The adaptor was fixed on the electrode surface according to the acylation reaction with MWCNTs and finally blocking the remaining sites of the modified electrode surface with polyethylene glycol(PEG).In the presence of E.coli DNA,the peak current was decreased and the resistence was increased.Under the optimal conditions,the biosensor had a good response to various concentrations of E.coli gene fragment,and the charge transfer resistance of the sensor was linearly related to the logarithm of adenosine concentrations starting from10 pmol/L to 1.0μmol/L with a detection limit of 6.3 pmol/L.
作者 王毅梦 王书民 樊雪梅 李哲建 刘萍 WANG Yimeng;WANG Shumin;FAN Xuemei;LI Zhejian;LIU Ping(College of Chemical Engineering and Modern Materials of Shangluo University,Shanxi Key Laboratory of Comprehensive Utilization of Tailings Resources,Shaanxi Engineering Research Center for Mineral Resources Clean&Efficient Conversion and New Materials,Shangluo 726000)
出处 《分析试验室》 CAS CSCD 北大核心 2021年第5期583-587,共5页 Chinese Journal of Analysis Laboratory
基金 陕西省科技厅项目(2018JM2040) 商洛学院科技创新团队项目(18SCX003)资助。
关键词 碳纳米管 生物传感器 大肠杆菌 carboxylated multi-walled carbon nanotubes biosensor E.coli
  • 相关文献

参考文献4

二级参考文献49

  • 1朱广华,贺艳峰,郭小英,刘和平.化学发光磁酶免疫法检测O157∶H7大肠埃希菌[J].高等学校化学学报,2006,27(8):1453-1455. 被引量:7
  • 2Michael I,Rizzo L,McArdell C S, Manaia C M, Merlin C,Schwartz T, Dagot C, Fatta-Kassinos D. Water Res.,2013, 47(3) : 957-995.
  • 3Zhang X,Lu W,Han E,Wang S, Shen J. Electrochim. Acta, 2014, 141 : 384-390.
  • 4W6ry N, Lhoutellier C, Ducray F, Delgenfes J P, Godon J J. Water Res.,2008,42(1-2) : 53-62.
  • 5Lang N L,Smith S R. Water Res.,2008,42(8-9) : 2229-2241.
  • 6Norton-Brandao D,Scherrenberg S M,van Lier J B. J. Environ. Manage.,2013, 122 : 85-98.
  • 7Money E S, Carter G P,Serre M L. Environ. Sci. Technol. , 2009, 43( 10) : 3736-3742.
  • 8Clesceri L,Greenberg A, Eaton A. Standard Methods of the Examinationof Water and Wastewater, 20th ed. American Public Health Associa-tion/American Water Works Association/Water Environment Federation, Washington, D C.
  • 9Zhang X,Geng P, Liu H,Teng Y, Liu Y,Wang Q,Zhang W,Jin L, Jiang L. Biosens. Bioelectron.,2009 , 24(7): 2155-2159.
  • 10Teng Y,Zhang X, Fu Y, Liu H, Wang Z,Jin L,Zhang W. Biosens. Bioelectron.,2011,26( 12) : 4661-4666.

共引文献19

同被引文献2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部