期刊文献+

基于分子动力学模拟的天然橡胶黏弹性材料力学行为 被引量:5

Mechanical behaviors of natural rubber viscoelastic materials based on molecular dynamics simulation
下载PDF
导出
摘要 以天然橡胶为例,采用分子动力学模拟方法,研究了单轴拉伸条件下材料分子链聚合度参数p、环境温度T和加载率R对黏弹性材料力学性能的影响.结果表明,材料应力随分子链聚合度和加载率的增加而增加,随温度的升高而降低,低温高频下材料呈现出塑性特点.在R=10^(8)s^(-1),T=250 K的条件下,p=20,40时,材料应力峰值分别为79.8和99.8 MPa;当p=40,R=10^(10)s^(-1)时,T=100,250 K条件下,应力幅值分别为134.9和103.9 MPa;在p=40,T=250 K情况下,R=10^(9),10^(10)s^(-1)时,应力峰值分别为122.7和134.9 MPa.在加载过程中,非键结势能对系统总势能的变化起主导作用,分子动力学模拟方法可以较好地分析分子链聚合度、环境温度和加载率等参数对黏弹性材料应力、系统能量和自由体积变化的影响. Taking natural rubber as an example,the effects of the material molecular chain polymerization degree p,the ambient temperature T and the loading rate R on the mechanical properties of viscoelastic materials under uniaxial tension conditions are investigated by using the molecular dynamics simulation method.The results show that the material stress increases with the increase of the polymerization degree and the loading rate,and decreases with the increase of the temperature.The material presents plastic characteristics at low temperature and high frequency.With the situation of R=108 s^(-1)and T=250 K,the material stress peaks are 79.8 and 99.8 MPa,respectively,when p=20,40.As p=40,R=10^(10)s^(-1),under the conditions of T=100,250 K,the stress amplitudes are 134.9 and 103.9 MPa,respectively.In the case of p=40,T=250 K,when R=10^(9),10^(10)s^(-1),the stress peaks are 122.7 and 134.9 MPa,respectively.In the loading process,the non-bonding potential energy plays a leading role in the total potential energy variation of the system.The molecular dynamics simulation method can be used to anaylze the effects of the molecular chain polymerization degree,the ambient temperature and the loading rate on the changes of the stress,the system energy and the free volume of viscoelastic materials.
作者 徐业守 徐赵东 郭迎庆 黄兴淮 戴军 盖盼盼 Xu Yeshou;Xu Zhaodong;Guo Yingqing;Huang Xinghuai;Dai Jun;Gai Panpan(Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education,Southeast University,Nanjing 211189,China;School of Civil Engineering,Southeast University,Nanjing 211189,China;Mechanical and Electronic Engineering School,Nanjing Forestry University,Nanjing 210037,China;Nanjing Dongrui Damping Control Technology Co.,Ltd.,Nanjing 210033,China)
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第3期365-370,共6页 Journal of Southeast University:Natural Science Edition
基金 国家重点研发计划资助项目(2016YFE0200500,2019YFE0121900) 长江学者奖励计划资助项目、科学探索奖资助项目、国家杰出青年科学基金资助项目(51625803) 国家自然科学基金资助项目(56237845) 江苏省国际合作资助项目(BZ2018058).
关键词 黏弹性材料 力学行为 分子动力学模拟 分子链聚合度 温度 加载率 viscoelastic material mechanical behaviours molecular dynamics simulation polymerization degree of molecular chain temperature loading rate
  • 相关文献

参考文献3

二级参考文献46

  • 1张振华,杨雷,庞世伟.高精度航天器微振动力学环境分析[J].航天器环境工程,2009,26(6):528-534. 被引量:45
  • 2吴波,建筑结构被动控制的理论与应用,1997年
  • 3Kasai K,Proceedings of ATC-17-1 on Seismic Isolation Passive Energy Dissipation and Active Control.2,1993年,521页
  • 4Lee H H,Proceedings of 10WCEE,1992年
  • 5团体著者,中华人民共和国国家军用标准(GJB979-90),1990年
  • 6Treloar L R G. The elasticity of a network of long chain molecules.Ⅰ[J]. Rubber Chemistry and Technology, 1943,16 (4) : 746-751.
  • 7Kuhn W, Grtin F. Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer Stoffe [ J ]. Kolloid-Zeitsehrift, 1942, 101 ( 3 ) : 248-271.
  • 8Wu P D, Van der Giessen E. On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers[J]. Journal of the Mechanics and Physics of Solids, 1993,41 (3):427-456.
  • 9Arruda E M, Boyce M C. A three-dimensional consti- tutive model for the large stretch behavior of rubber elastic materiats[J]. Journal of the Mechanics and Physics of Solids, 1993,41 (2) : 389-412.
  • 10Elias Zuniga A, Beatty M F. Constitutive equations for amended non-Gaussian network models of rubber elasticity[J]. International Journal of Engineering Science,2002,40(20) :2265-2294.

共引文献43

同被引文献85

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部