期刊文献+

基于BO-SDAE多源信号的风电机组轴承故障诊断 被引量:5

Fault Detection of Wind Turbine Bearing Based on BO-SDAE Multi-source Signal
下载PDF
导出
摘要 风电机组传感器受环境干扰,导致采集的信号存在差异,从而对风电机轴承的故障诊断结果产生影响。为提高故障诊断的可靠性,提出一种多源信号故障诊断方法。提取轴承振动信号、噪声信号、温度信号的时域、频域特征作为故障特征,利用经贝叶斯优化算法优化隐藏层节点结构的堆叠降噪自编码器对故障特征进行融合,采用Softmax对融合的故障特征进行分类。实验表明:该方法的故障准确率比单一信号进行故障诊断的方法更高,并且混合转速作为实验数据的情况下仍保持较高的准确率。 Due to the discrepancy within signals from sensors of wind turbines caused by environmental interference,the fault detection results of wind turbine bearing will be affected and the multi-source signal fault diagnosis method is proposed to improve the reliability of fault detection.The time-domain and frequency-domain features of bearing vibration signals,noise signals and temperature signals are used for feature extraction,and then the features are transmitted to the stacked denoising autoencoders,which are optimized the hidden layer node structure by the Bayesian optimization algorithm to achieve multi-source signal feature fusion.Softmax function is used for classification.Experiments show that the accuracy of this method is higher than that of the single signal fault diagnosis method,and still maintains a high accuracy rate with mixed speed as experimental data.
作者 吴定会 祝志超 韩欣宏 Wu Dinghui;Zhu Zhichao;Han Xinhong(Engineering Research Center of internet of Things Technology Appliations Ministry of Education,Jiangnan University,Wuxi 214122,China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2021年第5期1148-1156,共9页 Journal of System Simulation
基金 国家自然科学基金(61572237)。
关键词 风电机组 多源信号 堆叠降噪自编码器 贝叶斯优化 故障诊断 wind turbine multi-source signal stacked denoising autoencoders Bayesian optimization fault diagnosis
  • 相关文献

参考文献8

二级参考文献80

  • 1张镇,关书强.风电机组故障统计分析研究[J].风能,2013(8):68-71. 被引量:15
  • 2尹明,李庚银,周明,赵成勇.双馈感应风力发电机组动态模型的分析与比较(英文)[J].电力系统自动化,2006,30(13):22-27. 被引量:70
  • 3唐新安,谢志明,王哲,吴金强.风力机齿轮箱故障诊断[J].噪声与振动控制,2007,27(1):120-124. 被引量:47
  • 4Yang Y, Yu D, Cheng J. A roller bearing fault diag- nosis method based on EMD energy entropy and ANN [J]. Journal of Sound and Vibration, 2006, 294(1).. 269 -277.
  • 5Shen Z, Chen X, Zhang X, et al. A novel intelligent gear fault diagnosis model based on EMD and multi- classTSVM [J]. Measurement, 2012, 45(1): 30-- 40.
  • 6Li B, Liu P, Hu R, et al. Fuzzy lattice classifier and its application to bearing fault diagnosis [J]. Applied Soft Computing, 2012, 12(6): 1708--1719.
  • 7Zhao C L, Sun X B, Sun S L, et al. Fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine [J]. Expert Systems with Applications, 2011, 38(8): 9908 9912.
  • 8Widodo A, Yang B S. Wavelet support vector machine for induction machine fault diagnosis based on transi ent current signal [J]. Expert Systems with Applica- tions, 2008, 35(1): 307- 316.
  • 9Li B, Zhang P, Liu D, et al. Feature extraction for rolling element bearing fault diagnosis utilizing gener- alized S transform and two-dimensional non-negative matrix factorization[J]. Journal of Sound and Vibra- tion, 2011, 330(10): 2388 2399.
  • 10Ocak H, Loparo K A, Discenzo F M. Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling.. A method for bearing prognostics [J]. Journal of Sound and Vibration, 2007, 302(4): 951--961.

共引文献277

同被引文献48

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部