期刊文献+

冲击载荷作用下的锻锤热力耦合分析 被引量:1

Thermo-mechanical coupling analysis of forging hammer under impact load
下载PDF
导出
摘要 以用于径向锻造且由基体、过渡层、耐磨层三部分构成的材料复合锻锤为研究对象,分析瞬态热流、循环冲击载荷和热载荷导致的锻锤裂纹失效问题。通过构建热力耦合模型确定锻锤的裂纹危险区域,探讨冲击载荷、温度场与变形的传递关系,进而得到锻锤分别在冲击载荷、温度场和热力耦合作用下的应力和变形分布特征。研究结果表明,锻锤温度场分布不均匀,热影响区主要位于耐磨层工作面,温度随工作面纵向深度的增加而降低;耐磨层的机械应力远大于热应力,是产生疲劳裂纹的主要原因;锻锤变形主要是机械应力和热应力共同作用的结果,最大变形区域位于耐磨层工作面靠近预变形区一侧。仿真分析结果与锻锤实际失效情形一致,可为锻锤的优化设计提供参考。 A composite forging hammer for radial forging process,consisting of substrate,transition layer and wear-resistant layer,was studied.The hammer’s crack failures caused by transient thermal flux,cyclic impact load and thermal load were analyzed.A thermo-mechanical coupling model was established to determine the crack hazard area in the forging hammer,and the transfer relationships between impact load,temperature field and deformation were discussed.Then the stress and deformation distribution characteristics of the hammer under impact load,temperature field and coupled thermo-mechanical field were obtained.The results show that the temperature field in the forging hammer is not uniform,the heat affected zone is mainly located on the working surface of the wear-resistant layer,and the temperature drops with the increasing longitudinal depth of the working surface.The mechanical stress of the wear-resistant layer is much greater than its thermal stress and becomes the main cause of fatigue cracks.Deformations of the forging hammer are mainly due to the combined action of mechanical stress and thermal stress,and the maximum deformation area is located on the working surface of the wear-resistant layer and close to the pre-deformation region.The simulation analysis results are consistent with the actual failure cases and can serve as reference for the optimal design of forging hammers.
作者 宋四化 容芷君 但斌斌 任中立 余念 刘宗锴 Song Sihua;Rong Zhijun;Dan Binbin;Ren Zhongli;Yu Nian;Liu Zongkai(Key Laboratory of Metallurgical Equipment and Control of Ministry of Education, Wuhan University ofScience and Technology, Wuhan 430081, China;Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China;MCC Baosteel Technology Service Co., Ltd., Shanghai 200941, China)
出处 《武汉科技大学学报》 CAS 北大核心 2021年第4期248-255,共8页 Journal of Wuhan University of Science and Technology
基金 国家自然科学基金资助项目(51475340) 武汉市科技局科技成果转化项目(2019030703011522).
关键词 锻锤 径向锻造 冲击载荷 瞬态温度场 热力耦合分析 疲劳裂纹 forging hammer radial forging process impact load transient thermal field thermo-mechanical coupling analysis fatigue crack
  • 相关文献

参考文献4

二级参考文献31

  • 1程里,程方.大型热模锻锤事故分析[J].设备管理与维修,2005(1):12-13. 被引量:2
  • 2郑存吉.提高精锻机锤头寿命初探[J].锻压技术,1995,20(3):49-50. 被引量:5
  • 3谢志勇,毛静波,鲁幼勤,许涛,熊晖.低合金钢锤头的研制与应用[J].铸造技术,2006,27(3):237-238. 被引量:2
  • 4工程材料实用手册编辑委员会.工程材料实用手册[M].北京:中国标准出版社,1989..
  • 5机械工程材料性能数据手册编委会.机械工程材料数据手册[M].北京:机械工业出版社,1994.
  • 6马尔钦柯EA.金属表面摩擦破坏实质[M].何世禹,译.北京:国防工业出版社,1990.25-27.
  • 7郦正能.应用断裂力学[M].北京航空航天大学出版社,2010.
  • 8OVCHARENKO A, YANG M, CHUN K, et al. Transient thermomechanical contact of an impacting sphere on a moving flat[J]. ASME J. of Tribol., 2011, 133(3): 031404.
  • 9CHEN W W, WANG Q J. Thermomechanical analysis of elastoplastic bodies in a sliding spherical contact and the effects of sliding speed, heat partition, and thermal softening[J]. Trans. ASME J. of Tribol., 2008, 130: 041402.
  • 10CHUNG J C. Elastic-plastic contact analysis of an ellipsoid and a rigid flat[J]. Tribology International, 2010, 43: 491-502.

共引文献7

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部