期刊文献+

Native point defects and oxygen migration of rare earth zirconate and stannate pyrochlores 被引量:2

原文传递
导出
摘要 Various excellent properties of rare earth zirconate and stannate pyrochlores are close related with their native point defects.First-principles calculations are performed to systematically investigate the point defect mechanism and the oxygen diffusion behavior of A_(2)B_(2)O_(7)(A=La,Ce,Pr,Nd,Pm,Sm,Eu,Gd;B=Zr,Sn).The possible defect complexes and their associated reactions under stoichiometric and nonstoichiometric conditions are explored.The O Frenkel pairs are the most stable defect structure in stoichiometric zirconates,whereas the cation antisite defects are the predominant one in stoichiometric stannates.In the case of BO_(2) excess zirconates and stannates,the BA cation antisite defect with the A vacancy and/or the oxygen interstitial is energetically favorable,whereas the ABantisite defect together with the oxygen vacancy and/or the A interstitial is preferable under the A_(2)O_(3) excess condition.Meanwhile,the maximum point defect concentrations of zirconates are much higher than those of stannates.Furthermore,the oxygen migration barriers are similar in these compounds,ranging in 0.68 eV–0.80 eV.The predicted point defects and oxygen diffusion mechanisms play the critical role in their engineering applications and are expected to guide the future property improvement of pyrochlores through the control of point defects and/or composition.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第14期23-30,共8页 材料科学技术(英文版)
基金 supported by the National Natural Science Foundation of China(No.51602188) the Program for Professor of Special Appointment(Eastern Scholar)by Shanghai Municipal Education Commission(No.TP2015040)。
  • 相关文献

同被引文献6

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部