摘要
The influence of a high magnetic field(HMF)on the nucleation kinetics of paramagnetic aluminum and diamagnetic zinc melts has been investigated by differential thermal analysis(DTA).It is found that the application of an HMF increases the undercooling of pure aluminum and pure zinc at the same heatingcooling rates.Moreover,the quantitative analysis of activation energy calculated from the DTA results using the Kissinger method manifests that the HMF reduces the activation energy of pure aluminum and pure zinc.Regardless of magnetism,the nucleation frequency under an HMF is higher than that without an HMF.Furthermore,the increase in undercooling under the HMF is mainly attributed to the increase of the contact angle,calculated by the functional relationship between the cooling rate and undercooling.This result is consistent with the increase of the calculated nucleation work for pure aluminum and pure zinc.Additionally,the increase in undercooling caused by the HMF is partly ascribed to the magnetic field-induced suppression of thermal convection in the undercooled melt.
基金
financially supported by the National Natural Science Foundation of China(Nos.51571056,51904183 and 51690164)
“Shuguang Program”from Shanghai Municipal Education Commission
China Postdoctoral Science Foundation(Nos.2018M640375 and 2019T120330)
the Shanghai Science and Technology Committee Grant(Nos.19XD1401600 and 19010500300)。