期刊文献+

基于超声导波和脉冲涡流技术的承压设备腐蚀检测 被引量:3

Corrosion detection of pressure equipment based on ultrasonic guided wave and pulsed eddy current technology
下载PDF
导出
摘要 超声导波技术可以长距离、快速地在免除大面积拆除包覆层的基础上检测承压设备的内外壁腐蚀缺陷,但对带有包覆层承压设备的缺陷复验存在一定困难。针对上述问题,采用脉冲涡流技术对超声导波检测结果进行复验,通过设置对比试块检测试验和现场检测应用,证明了脉冲涡流技术可以有效地复验超声导波的检测结果,这两种技术的结合使用,能够使超声导波技术更好地应用于承压设备的检测中。 Ultrasonic guided wave technology can detect corrosion defects on the inner and outer walls of the pressure equipment in long-distance,fast,and large-scale manner without the need of removing the coating.However,there are certain difficulties in re-examining the defects of pressure equipment with cladding.In response to the above problems,this paper uses pulse eddy current technology to reexamine the ultrasonic guided wave test results,By setting a test block for comparative test,and conducting on-site testing application,it is proved that the pulse eddy current technology can effectively recheck the ultrasonic guided wave test results.Through the combined use of these two technologies,ultrasonic guided wave technology can be better applied to the detection of pressure equipment.
作者 张小龙 张子健 柴军辉 胡健 吴家喜 沈建民 许波 陆建平 陈会明 ZHANG Xiaolong;ZHANG Zuian;CHAI Junhui;HU Jian;WU Jiaxi;SHEN Jianmin;XU Bo;LU Jianping;CHEN Huiming(Ningbo Labor Safety and Technology Services Company,Ningbo 315048,China;Ningbo Special Equipment Inspection and Research Institute,Ningbo 315048,China;Hangzhou Zheda Jingyi Electromechanical Technlogy Co.,Ltd.,Hangzhou 311100,China)
出处 《无损检测》 CAS 2021年第4期77-81,共5页 Nondestructive Testing
基金 浙江省质监系统质量技术基础建设项目(20180119)。
关键词 超声导波 压电效应 脉冲涡流 腐蚀检测 ultrasound guided wave piezoelectric effect pulsed eddy current corrosion detection
  • 相关文献

参考文献3

二级参考文献24

  • 1何存富,刘增华,孙雅欣,王秀彦,吴斌.基于超声导波技术对弯管中缺陷检测的实验研究[J].中国机械工程,2005,16(18):1662-1665. 被引量:21
  • 2Gazis D C. Three-Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation[J]. Journal of the Acoustical Society of America, 1959, 31 (5):568-573.
  • 3Sanderson R. A closed form solution method for rapid calculation of guided wave dispersion curves for pipes[J]. Wave Motion, 2014, 53 : 40-50.
  • 4Karpfinger F, Valero H P, Gurevich B, et al. Spectral- method algorithm for modeling dispersion of acoustic modes in elastic cylindrical structures[J]. Geophysics, 2010, 75 (3) .. H19.
  • 5Lowe M J S, Alleyne D N, Cawley P. Defect detection in pipes using guided waves[J]. Ultrasonics, 1998, 36 (1) : 147-154.
  • 6Sato H, Lebedev M, Akedo J. Theoretical and Experimental Investigation of Propagation of Guide Waves in Cylindrical Pipe Filled with Fluid[J]. Japanese Journal of Applied Physics, 2006, 45 : 4573-4576.
  • 7Sato H, Ogiso H. Analytical Method for Guided Waves Propagating in a Fluid-Filled Pipe with Attenuation [J]. Japanese Journal of Applied Physics, 2013, 52 (7) : 1044- 1055.
  • 8Sato H, Ogiso H. Guided waves propagating in a water-filled stainless steel pipe[J]. Japanese Journal of Applied Physics, 2014, 53 (7S) : 4363-4369.
  • 9Shen W, Huang S, Wei Z, et al. 3D modeling of circumferential SH guided waves in pipeline for axial cracking detection in ILl tools[J]. Ultrasonics, 2015, 56 : 325-331.
  • 10Lu B, Upadhyaya B R, Perez R B. Structural integrity monitoring of steam generator tubing using transient acoustic signal analysis[J]. IEEE Transactions on Nuclear Science, 2005, 52 (1): 484-493.

共引文献26

同被引文献19

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部