期刊文献+

融合语义特征和分布特征的跨媒体关联分析方法研究 被引量:2

Research on Cross-media Correlation Analysis by Fusing Semantic Features and Distribution Features
下载PDF
导出
摘要 文本、图像、视频、音频等多种媒体数据具有多源异构的特性,这导致“语义鸿沟”问题的出现。现有文献采用的方法中大多数是针对文本和图像两种媒体数据展开研究,难以实现更多类型媒体数据的关联分析。因此,本文融入多种媒体数据的语义特征和分布特征,来对跨媒体关联分析方法进行深入研究,以实现文本、图像、视频、音频等多种媒体数据的一致性表示。首先,对多种媒体数据进行向量化表示,并输入模型;其次,利用双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)挖掘输入数据的上下文信息,得到各种媒体数据的特征向量;最后,融合特征向量的语义特征和分布特征进行跨媒体关联分析,进而得到跨媒体的一致性表示。自建数据集上的比较实验结果表明,本文的研究方法较之CCA(canonical correlation analysis)、KCCA(kernel canonical correlation analysis)、Deep-SM(deep semantic match)等已有方法具有更高的关联分析准确率,这表明本文的研究方法能够较为准确地发现各种媒体数据之间的语义关联关系。希望本文的研究对跨媒体关联分析研究具有一定的指导和借鉴作用。 Several types of media data such as text,image,video,and audio are of multi-source heterogeneous type,which leads to the problem of semantic gaps.Current researches focus mostly on text and image,presumably because it is difficult to measure the correlation between more types of media data.Therefore,we discuss performing cross-media correlation analysis by fusing the semantic features and distribution features so as to produce consistent presentation of different types of media data.The different types of media data are first vectorized and input into the proposed model.Then,bidirectional long short-term memory(BiLSTM)is utilized to extract the context information,and the feature vectors are obtained.Finally,the correlation between different types of media data is analyzed by fusing the semantic features and distribution features,and all types of media data are represented consistently.The comparative experimental results show that the method proposed in this paper performs better than several traditional methods such as CCA(canonical correlation analysis),KCCA(kernel canonical correlation analysis),and Deep-SM(deep semantic match),which indicates that the proposed method can precisely detect the semantic correlation between different types of media data.The paper offers guidance and reference for research on cross-media correlation analysis.
作者 刘忠宝 赵文娟 Liu Zhongbao;Zhao Wenjuan(Institute of Language Intelligence,Beijing Language and Culture University,Beijing 100083;Key Laboratory of Cloud Computing and Internet-of-Things Technology,Quanzhou University of Information Engineering,Quanzhou 362000)
出处 《情报学报》 CSSCI CSCD 北大核心 2021年第5期471-478,共8页 Journal of the China Society for Scientific and Technical Information
基金 国家社会科学基金一般项目“大数据环境下面向图书馆资源的跨媒体知识服务研究”(19BTQ012)。
关键词 跨媒体数据 关联分析 双向长短期记忆网络 语义特征 分布特征 cross-media data correlation analysis bidirectional long short-term memory(BiLSTM) semantic features distribution features
  • 相关文献

参考文献10

二级参考文献99

  • 1薛向阳.基于内容的多媒体和跨媒体信息检索技术[J].世界科学,2005,27(12):21-22. 被引量:4
  • 2候杰.数字图书馆中图像信息的检索技术[J].图书馆理论与实践,2006(2):101-103. 被引量:2
  • 3王思力,王斌.基于双字耦合度的中文分词交叉歧义处理方法[J].中文信息学报,2007,21(5):14-17. 被引量:17
  • 4McGurk H, MacDonald J. Hearing lips and seeing voices [ J ] . Natures, 1976, 264 (5588) : 746 - 748.
  • 5Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases [ C ]//Proceedings. of the ACM SIGMOD Conference on Management of Data. New York : ACM Press, 1993:207-216.
  • 6吴飞,杨易,庄越挺.跨媒体分析与检索[J].中国计算机学会通讯,2011,7(2):22-26.
  • 7Lemaire B, Denhiere G. Effect of high-order co-occurrences on word semantic similarities [OL].[ 2012 - 02 - 12 ]. http://cpl. revues, org/document471, html.
  • 8甘明鑫,窦雪,王道平,等.一种综合加权的本体概念语义相似度计算方法[OL].[2012-02-16].http://www.cnki.net/kcms/detail/11.2127.tD.20110725.1625.046.html.
  • 9Wu Zhibiao, Palmer M. Verb senmntics and lexical selection [ C]// Proceedings of the 32nd Computational Linguistics. Linguistics, 1994:133-138 Annual Meeting on Association for Stroudsburg Association for Computational.
  • 10Michael S Lew, Nicu Sebe, Chabane Djeraba. Con- tent-based Multimedia Information Retrieval: State of the Art and Challenges [J]. ACM Transactions on Mul- timedia Computing, 2006, 2(1): 1-19.

共引文献106

同被引文献26

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部