摘要
In this work,the laminar-to-turbulent transition phenomenon around the two-and three-dimensional ellipsoid at different Reynolds numbers is numerically investigated.In the present paper,Reynolds Averaged Navier Stokes(RANS)equations with the Spalart-Allmaras,SST k-ω,and SST-Trans models are used for numerical simulations.The possibility of laminar-toturbulent boundary layer transition is summarized in phase diagrams in terms of skin friction coefficient and Reynolds number.The numerical results show that SST-Trans method can detect different aspects of flow such as adverse pressure gradient and laminar-to-turbulent transition onset.Our numerical results indicate that the laminar-to-turbulent transition location on the 6:1 prolate spheroid is in a good agreement with the experimental data at high Reynolds numbers.
基金
Erfan Kadivar acknowledges the support of Shiraz University of Technology Research Council.