期刊文献+

基于机器视觉的弹簧承载座缺陷检测研究 被引量:2

The study of spring bearing shell defect detection based on machine vision
原文传递
导出
摘要 针对弹簧承载座人工检测效率低、劳动强度大等问题,对弹簧承载座缺陷种类及缺陷特征进行了研究,并对其缺陷检测流程进行了分析归纳,提出了一种基于机器视觉的弹簧承载座缺陷检测方法,实现了缺陷检测自动化。通过中值滤波算法对图像进行预处理,去除图片噪声;提出了一种两步找圆的方法,确定检测区域尺寸,再通过对检测区域进行掩膜操作,实现弹簧承载座焊渣和缺口缺陷检测;通过基于边缘点的模板匹配算法来判断字符的完整性。实验结果表明,以上方法能够准确判断弹簧承载座尺寸、焊渣、缺口以及字符等缺陷,检测正确率达到98%。 Aiming at the problems of low detection efficiency and high labor intensity of the spring bearing shell, the types and defects of the spring bearing shell are studied, and the defect detection process is analyzed and summarized.A spring bearing shell detection algorithm based on machine vision is proposed to realize the automation of defect detection.The image is preprocessed by the median filtering algorithm to remove the picture noise.A two-step circle location method is proposed to determine the size of the detection area, and then the masking operation is performed on the detection area to realize the detection of the slag and notch defects of the spring bearing shell.The character integrity is determined by an edge-based template matching algorithm.The experimental results show that the algorithm above can accurately determine the size of the spring bearing shell, welding slag, notch and characters, and the detection accuracy reaches to 98%.
作者 李倩 赵闻 路韬 商兵 李嘉杰 LI Qian;ZHAO Wen;LU Tao;SHANG Bing;LI Jiajie(Metrology Center of Guangdong Power Grid Co.,Ltd.,Guangzhou 510000,China)
出处 《自动化与仪器仪表》 2021年第5期57-60,共4页 Automation & Instrumentation
基金 广东电网有限责任公司科技项目(No.GDKJXM20185871)。
关键词 机器视觉 中值滤波 特征圆提取 掩膜操作 模板匹配 machine vision median filter feature circle extraction mask operation template matching
  • 相关文献

参考文献11

二级参考文献107

共引文献298

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部