摘要
We report the electrochemical performance of Ni(OH)_(2) on a gas diffusion layer(GDL).The Ni(OH)_(2) working electrode was successfully prepared via a simple method,and its electrochemical performance in 1 M NaOH electrolyte was investigated.The electrochemical results showed that the Ni(OH)_(2)/GDL provided the maximum specific capacitance value(418.11 F·g^(−1))at 1 A·g^(−1).Furthermore,the Ni(OH)_(2) electrode delivered a high specific energy of 17.25 Wh·kg^(−1) at a specific power of 272.5 W·kg^(−1) and retained about 81%of the capacitance after 1000 cycles of galvanostatic charge–discharge(GCD)measurements.The results of scanning electron microscopy(SEM)coupled with energy-dispersive X-ray spectroscopy(EDS)revealed the occurrence of sodium deposition after long-time cycling,which caused the reduction in the specific capacitance.This study results suggest that the light-weight GDL,which can help overcome the problem of the oxide layer on metal–foam substrates,is a promising current collector to be used with Ni-based electroactive materials for energy storage applications.
基金
This work was financially supported by the Office of the Higher Education Commission under NRU Project of Thailand
the Research Network NANOTEC(RNN)program of the National Nanotechnology Center(NANOTEC),NSTDA,Ministry of Higher Education,Science,Research and Innovation(MHESI),Thailand.T.Sichumsaeng would like to thank the Science Achievement Scholarship of Thailand(SAST)for the support of her PhD study.