期刊文献+

基于BP神经网络模拟闸坝下游冲刷坑空间分布 被引量:1

Simulation on Spatial Distribution of Downstream Scour Pit for Sluice Dam Based on BP Neural Network
下载PDF
导出
摘要 闸坝下游河床的冲刷是一个复杂的非线性系统,现有的计算方法无法得到冲刷坑的空间分布。基于BP神经网络,利用某个试验工况冲刷坑的空间坐标信息训练网络,建立其他工况闸坝下游冲刷坑的插值和预测模型,此法可精准地识别出表现优异的神经网络。将BP神经网络在特征断面的插值结果与反距离加权、克里金、局部多项式插值法的插值结果对比,分析预测值和实测值的最低点差值、均方根误差和相关系数。结果表明,BP神经网络在冲刷上游段和过渡段的插值结果明显优于其他3种插值方法且能较好地预测冲刷坑发展,可利用该方法结合BP神经网络模拟闸坝下游冲刷坑的空间分布特性。 The scouring of riverbed downstream the sluice dam is a complex nonlinear system,and the existing calculation formula cannot reflect the spatial distribution of scour pit.By using the spatial coordinate information of the scour pit under a test condition,the interpolation and prediction model of downstream scour pit of sluice dam under other working conditions are established based on the BP neural network.This method can accurately identify the neural network with excellent performance.The interpolation results of BP neural network in the characteristic section are compared with the interpolation results of inverse distance weight,Kriging and local polynomial interpolation,and the lowest point difference,root mean square error and correlation coefficient between predicted and measured values are analyzed.The results show that the interpolation results of BP neural network in the upstream section and transition section of scouring are obviously better than the other three interpolation methods.The adopted method can be combined with BP neural network to simulate the spatial distribution characteristics of scour pits downstream of the sluice dam.
作者 王澳华 王韦 田忠 杨昊 朱艳德 WANG Aohua;WANG Wei;TIAN Zhong;YANG Hao;ZHU Yande(State Key Laboratory of Hydraulics and Mountain River Engineering,Sichuan University,Chengdu 610065,Sichuan,China)
出处 《水力发电》 CAS 2021年第6期55-59,共5页 Water Power
基金 国家自然科学基金资助项目(51879178)。
关键词 冲刷坑 BP神经网络 空间分布 插值 预测 scour pit BP neural network spatial distribution interpolation prediction
  • 相关文献

参考文献8

二级参考文献34

  • 1周银军,陈立,桂波,刘欣桐.正挑桩式丁坝壅水特性及其冲刷深度计算模式理论[J].四川大学学报(工程科学版),2009,41(2):58-63. 被引量:3
  • 2王桂莲,白乃彬.多氯酚QSAR数值模型比较研究[J].环境科学学报,1996,16(2):190-194. 被引量:8
  • 3吕柏权,李天铎.一种具有全局最估的神经网络BP算法[J].清华大学学报(自然科学版),1997,37(2):32-34. 被引量:15
  • 4MartinHaganT HowardDemuthB MarkBealeH 戴葵 等译.Neural Network design [M].北京:机械工业出版社,2002..
  • 5Rumelhart D E, Willians R J. Learning internal representations by error - propagation[M]. In Parallel Distributed Processing,Canbridge, MA MIT Press, 1986.
  • 6Brogan W L. Modern control theory [M] .3nd Ed. Englewood Cliffs, N J: Prentice Hall,1991.
  • 7Neural Network toolbox user's guide. The Math works. Inc. 2000.
  • 8陈椿庭.关于高坝挑流消能和局部冲刷深度的一个估算公式[J].水利学报,1963,(2).
  • 9阎平凡 张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2001..
  • 10黄声享,尹晖,蒋征.变形监测数据处理[M].武汉:武汉大学出版社,2002.20-25.

共引文献273

同被引文献14

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部