期刊文献+

混杂纤维混凝土冻融后损伤值预测

Prediction of the damage value of hybrid fiber reinforced concrete after freeze-thaw
下载PDF
导出
摘要 混杂纤维混凝土受冻融作用后的损伤值受多种因素的影响,现阶段难以建立各影响因素与损伤值之间的数学模型。通过神经网络的自适应、自学习和非线性映射,可以建立以影响因素为输入变量、以损伤值为输出变量之间的非线性关系。采用相关试验数据,基于MATLAB软件建立AdaBoost-BP和BP神经网络预测模型,利用这两种预测模型对混杂纤维混凝土受冻融作用后的损伤值进行了预测,并将各自的预测值和实测值进行了对比分析。结果表明:AdaBoost-BP神经网络的预测精度较BP神经网络的预测精度更高,该模型为工程上研究混杂纤维混凝土受冻融循环损伤后的损伤程度提供了新方法。 The damage value of HFRC after freeze-thaw is affected by many factors,so it is difficult to establish the mathematical model between each factor and damage value at present.Through the self-adaptive,self-learning and nonlinear mapping of neural network,the nonlinear relationship between the influencing factors as input variables and the damage value as output variables can be established.Based on the relevant test data and MATLAB software,the prediction models of AdaBoost-BP and BP neural network are established.The damage value of hybrid fiber concrete after freeze-thaw is predicted by using these two prediction models,and the predicted value and the measured value are compared and analyzed.The results show that the prediction accuracy of AdaBoost-BP neural network is higher than that of BP neural network,which provides a new method for engineering research on the damage degree of hybrid fiber concrete after freeze-thaw cycle damage.
作者 郭少龙 赵丽红 柳晓科 刘有志 Guo Shaolong;Zhao Lihong;Liu Xiaoke;Liu Youzhi(School of Science,China Tianjin Chengjian University,Tianjin 300384,China;College of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210098,China;Tianjin Hengde Labor Service Co.,Ltd.,Tianjin 300350,China;North China Municipal Engineering Design and Research Institute Co.,Ltd.,Tianjin 300381,China;Tianjin Yuanxu Engineering Consultation and Management Co.,Ltd.,Tianjin 300191,China)
出处 《山西建筑》 2021年第12期84-86,共3页 Shanxi Architecture
基金 天津市技术创新引导专项(基金)(20YDTPJC00180)。
关键词 混杂纤维混凝土 冻融损伤 神经网络 AdaBoost-BP模型 hybrid fiber reinforced concrete freeze-thaw damage neural network AdaBoost-BP model
  • 相关文献

参考文献4

二级参考文献47

  • 1朱晨飞,刘晓军,李文哲,吴永根,刘庆涛.混杂纤维混凝土冻融耐久性与损伤模型研究[J].工业建筑,2015,45(2):10-14. 被引量:34
  • 2李卫,过镇海.高温下砼的强度和变形性能试验研究[J].建筑结构学报,1993,14(1):8-16. 被引量:259
  • 3吴波, 袁杰. 国内外混凝土结构火灾后基本性能研究综述[A]. 全国建筑物鉴定与加固第四届学术交流会论文集[C], 昆明, 1998,(11):764-770.Wu Bo, Yuan Jie. The survey of basic performance of concrete structures after exposure to fire [C]. Proceedings of the 4th Chinese Conference on Diagnosis and Reinforce of Building, Kunming, 1998, (11):764-770.
  • 4Weigier H, Fisher R. Beton bei temperature von 100c bis 750c[R]. Beton Herstellung Verwendung, 1968.
  • 5G G Carette, K E Painter, V M Malhotra. Sustained High Temperature Effect on Concretes Made With Normal Portland Cement, Normal Portland Cement and Slag, or Normal Portland Cement and Fly Ash[J]. Concrete International, 1982, (7):41-51.
  • 6J A Purkiss. Steel fiber reinforced concrete at elevated temperature[J]. The International Journal of Cement Composites and Lightweight Concrete, 1984, 6(3):179-184.
  • 7Y Y Chan, P Jin, M Anson, J S Wang. Fire resistance of concrete: prediction using artificial neural networks[J]. Magazine of Concrete Research. 1998, 50(4):353-358.
  • 8Yang Q. An introduction to transfer learning. In: Proceedings of the 4th International Advanced Data Mining and Applications Conference. Berlin, Heidelberg: Springer-Verlag, 2008. 1.
  • 9Taylor M E, Stone P. Transfer learning for reinforcement learning domains: a survey. Journal of Machine Learning, 2009, 10: 1633-1685.
  • 10Dai W Y, Yang Q, Xue G R, Yu Y. Boosting for transfer learning. In: Proceedings of the 24th International Conference on Machine Learning. New York, USA: ACM, 2007. 193-200.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部