期刊文献+

基于粒子群算法优化SVM的中小微企业信用风险评估

Credit Risk Assessment of Small,Medium and Micro Enterprises Based on Particle Swarm Optimization SVM
下载PDF
导出
摘要 中小微企业融资难的问题凸显,信用风险的识别模型研究变得越来越重要,为了更好的减轻中小微企业的困境,本文以中小微企业为研究对象,选取信用风险指标,采用主成分分析(PCA)的方法筛选并构建信用风险识别指标体系。运用粒子群优化算法(PSO)与支持向量机模型相结合,优化支持向量机参数,并将该模型与网格寻优、遗传算法(GA)优化支持向量机模型的评估结果进行比较分析。最终实验结果表明:粒子群优化算法优化的支持向量机模型的评估结果准确率要优于网格寻优与遗传算法。 The problem of financing difficulties for small,medium and micro enterprises is highlighted.Research on credit risk identification models has become more and more important.In order to better alleviate the plight of small,medium and micro enterprises,this article takes small,medium and micro enterprises as the research object and selects credit risk indicators and adopts Principal component analysis(PCA)method screens and builds a credit risk identification index system.The particle swarm optimization algorithm(PSO)is combined with the support vector machine model to optimize the parameters of the support vector machine,and the model is compared with the evaluation results of the grid optimization and the genetic algorithm(GA)optimization support vector machine model.The final experimental results show that the accuracy of the evaluation results of the support vector machine model optimized by the particle swarm optimization algorithm is better than that of the grid optimization and genetic algorithm.
作者 陈锐 CHEN Rui(School of Statistics and Applied Mathematics,Anhui University of Finance and Economics,Bengbu 233000,China)
出处 《价值工程》 2021年第13期252-253,共2页 Value Engineering
基金 安徽财经大学研究生科研创新基金项目(ACYC2020263)。
关键词 粒子群算法 中小微企业 信用风险 particle swarm algorithm small,medium and micro enterprises credit risk
  • 相关文献

参考文献6

二级参考文献76

  • 1王春峰,万海晖,张维.组合预测在商业银行信用风险评估中的应用[J].管理工程学报,1999,13(1):11-14. 被引量:67
  • 2丁欣.国外信用风险评估方法的发展现状[J].湖南大学学报(社会科学版),2002,16(S1):140-142. 被引量:16
  • 3蒙肖莲,蔡淑琴,杜宽旗,寇建亭.商业银行客户流失预测模型研究[J].系统工程,2004,22(12):67-71. 被引量:19
  • 4许进,陶克涛.科技型中小企业信用评估的指标体系设计[J].科学管理研究,2006,24(3):55-58. 被引量:9
  • 5Vapnik V N 张学工 译.统计学习理论的本质[M].北京:清华大学出版社,1999..
  • 6Altman E I. Corporate Financial Distress: a Complete Guide to Predicting. Avoiding. and Dealing with Bankruptcy[M]. NewYork,John Wiley & Sons. 1983.
  • 7Tam K Y. Neural network applications models and the prediction of bank bankruptcy[J]. Omega-the International Journal of Management Science, 1991,19: 429-445.
  • 8Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998,2 (2) :955 - 974.
  • 9Altman E I. Commercial bank lending: process, credit scoring and costs of errors in lending [J]. J. Financial and Quantitative Anal. , 1980,15 : 813- 832.
  • 10Altman E I. Corporate Financial Distress: a Complete Guide to Predicting, Avoiding, and Dealing with Bankruptcy[M]. NewYork:John Wiley& Sons, 1983.?A

共引文献153

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部