期刊文献+

射影几何观点下圆切线作法的理论研究与应用 被引量:1

Theoretical Study and Application of Circular Tangent in Projective Geometry
下载PDF
导出
摘要 利用射影几何二阶曲线切线作法探讨欧式几何圆的切线作法,揭示了射影几何与欧式几何圆切线作法的内在联系,解决了圆切线相关的几何问题,使几何证明与作图相统一,对于椭圆、双曲线、抛物线都成立,从宏观角度给出问题的本质属性。 Through using the tangent method of second order curve of projective geometry,the research discusses the tangent method of Euclidean geometric circle,reveals the internal relation between projective geometry and Euclidean geometric circular tangent method,and solves the geometric problems related to circular tangent,so that its geometric proof and drawing are unified.And this also exists in ellipse,hyperbola and parabola.The essential attributes are provided from the macro-perspective.
作者 况周炜 赵临龙 Kuang Zhouwei;Zhao Linlong(School of Mathematics and Statistics,Ankang University,Ankang 725000,China)
出处 《黑龙江科学》 2021年第11期68-69,共2页 Heilongjiang Science
基金 陕西省高等教育教学改革研究项目(19BY120) 安康学院硕士点培育学科专项(2016AYXNZX009)。
关键词 射影几何 圆切线作法 欧式几何 二阶曲线 Projective geometry Circular tangent method Euclidean geometry The second order curve
  • 相关文献

参考文献10

二级参考文献21

共引文献4

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部