摘要
利用射影几何二阶曲线切线作法探讨欧式几何圆的切线作法,揭示了射影几何与欧式几何圆切线作法的内在联系,解决了圆切线相关的几何问题,使几何证明与作图相统一,对于椭圆、双曲线、抛物线都成立,从宏观角度给出问题的本质属性。
Through using the tangent method of second order curve of projective geometry,the research discusses the tangent method of Euclidean geometric circle,reveals the internal relation between projective geometry and Euclidean geometric circular tangent method,and solves the geometric problems related to circular tangent,so that its geometric proof and drawing are unified.And this also exists in ellipse,hyperbola and parabola.The essential attributes are provided from the macro-perspective.
作者
况周炜
赵临龙
Kuang Zhouwei;Zhao Linlong(School of Mathematics and Statistics,Ankang University,Ankang 725000,China)
出处
《黑龙江科学》
2021年第11期68-69,共2页
Heilongjiang Science
基金
陕西省高等教育教学改革研究项目(19BY120)
安康学院硕士点培育学科专项(2016AYXNZX009)。
关键词
射影几何
圆切线作法
欧式几何
二阶曲线
Projective geometry
Circular tangent method
Euclidean geometry
The second order curve