期刊文献+

氮掺杂碳纳米管活化过硫酸盐降解丁基黄药 被引量:4

Degradation of butyl xanthate using persulfate activated with nitrogen-doped carbon nanotube
下载PDF
导出
摘要 采用氮掺杂碳纳米管(N-CNT)作为活化剂活化过硫酸钠(SPS)降解丁基黄药。考察了N-CNT加入量、SPS质量浓度、共存阴离子和腐殖酸(HA)对丁基黄药降解的影响。实验结果表明:N-CNT作为一种非金属活化剂,可以高效地活化SPS降解丁基黄药,在丁基黄药质量浓度为200 mg/L、N-CNT加入量为0.40 g/L、SPS浓度为0.50 mmol/L、pH=7时,降解80 min后丁基黄药可被完全去除;共存HA会抑制丁基黄药的降解,抑制作用随着HA浓度的增大而增大;Cl-、HCO3-和SO42-对丁基黄药的降解有一定的抑制作用;N-CNT活化SPS降解丁基黄药的过程中,自由基机制和非自由基机制共同作用导致了丁基黄药的降解,并且非自由基机制占主导。 Nitrogen-doped carbon nanotube(N-CNT)was used as an activator to activate sodium persulfate(SPS)to degrade butyl xanthate.The effects of N-CNT dosage,SPS mass concentration,coexisting anions and humic acid(HA)were investigated.The experiment results indicate that:As a nonmetal catalyst,CNT can effectively activate PS to degrade butyl xanthate,and butyl xanthate can be degraded completely within 80 min under the conditions of butyl xanthate mass concentration 200 mg/L,N-CNT dosages 0.40 g/L,SPS concentration 0.5 mmol/L and pH 7;Co-existing HA can inhibit the degradation of butyl xanthate,and the inhibitory effect increased with the increasing of HA concentration;In addition,the presence of Cl-,HCO3-have a slightly inhibitory effect on butyl xanthate degradation;In the process,both the radical and the non-radical mechanism are involved,and the non-radical mechanism is dominated.
作者 熊玲 张敏 陈绍华 XIONG Ling;ZHANG Min;CHEN Shaohua(College of Resources and Environmental Science,South-Central University for Nationalities,Wuhan 430074,China)
出处 《化工环保》 CAS CSCD 北大核心 2021年第3期296-302,共7页 Environmental Protection of Chemical Industry
基金 国家自然科学基金青年基金(51708561)。
关键词 氮掺杂碳纳米管 丁基黄药 过硫酸钠 活化 降解 nitrogen-doped carbon nanotube butyl xanthate sodium persulfate activation degradation
  • 相关文献

参考文献7

二级参考文献107

  • 1郑伟,杨曦,张金凤,张川,孔令仁.Fe(Ⅱ)/K_2S_2O_8对水体中As(Ⅲ)的氧化研究[J].环境科学与技术,2007,30(11):41-42. 被引量:12
  • 2Liang Chenju, Wang Z. S. , Mohanty N. Influences of car- bonate and chloride ions on persulfate oxidation of trichloro- ethylene at 20~C. Science of the Total Environment, 2006, 370 ( 2-3 ) : 271-277.
  • 3Khan N. E. , Adewuyi Y. G. Absorption and oxidation of nitric oxide (NO) by aqueous solutions of sodium persul- fate in a bubble column reactor. Industrial & Engineering Chemistry Research, 2010, 49 ( 18 ) : 8749-8759.
  • 4Waldemer R. H. , Tratnyek P. G. , Johnson R. L. , et al. Oxidation of chlorinated ethenes by heat-activated persul- fate: Kinetics and products. Environmental Science & Technology, 2007, 41(3) : 1010-1015.
  • 5House D. A. Kinetics and mechanism of oxidations by per- oxydisulfate. Chemical Reviews, 1962, 62 (3) : 185-203.
  • 6Tsitonaki A. , Petri B. , Crimi M. , et al. In situ chemical oxidation of contaminated soil and groundwater using per- sulfate: A review. Critical Reviews in Environmental Sci- ence and Technology, 2010, 40( 1 ) : 55-91.
  • 7Liang Chenju, Bruell C. J. , Marley M. C. , et al. Persul- fate oxidation for in situ remediation of TCE. I. Activatedby ferrous ion with and without a persulfate-thiosulfate red- ox couple. Chemosphere, 2004, 55(9) : 1213-1223.
  • 8Kent D. B. , DavisJ. A. , JoyeJ. L., et al. Influence of variable chemical conditions on EDTA-enhanced transport of metal ions in mildly acidic groundwater. Environmental Pollution, 2008, 153( 1 ) : 44-52.
  • 9Tsang D. C. W., Zhang Weihua, Lo I. M. C. Copper ex- traction effectiveness and soil dissolution issues of EDTA- flushing of artificially contaminated soils. Chemosphere, 2007, 68 ( 2 ) : 234-243.
  • 10Liang.Chenju, Lai Mingchun. Trichloroethylene degrada- tion by zero valent iron activated persulfate oxidation. Envi- ronmental Engineering Science, 2008, 25 ( 7 ) : 1071-1078.

共引文献90

同被引文献59

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部