期刊文献+

基于改进的YOLOv3算法的乳腺超声肿瘤识别 被引量:2

Tumor recognition in breast ultrasound images based on an improved YOLOv3 algorithm
下载PDF
导出
摘要 为了提高乳腺癌诊断的效率以及准确性,本文提出一种基于改进的YOLOv3算法来构建一个乳腺超声肿瘤识别算法,辅助医生进行乳腺癌的诊断。首先在Res2Net网络上融入SE模块构建SE-Res2Net网络来取代原始YOLOv3中的特征提取网络,以此提升模型特征提取的能力。然后通过搭建一个新型下采样模块(downsample block)来解决原始模型中下采样操作容易出现信息丢失的不足。最后为了进一步提升模型特征提取的能力,结合残差连接网络以及密集连接网络的优点构建Res-DenseNet网络来替换原始模型的残差连接方式。实验结果表明:改进后的YOLOv3算法比原始YOLOv3算法的m AP提高了4.56%,取得较好的检测结果。 To improve the efficiency and accuracy of breast cancer diagnoses,a breast ultrasound tumor recognition algorithm based on an improved YOLOV3 algorithm is proposed to assist doctors in breast cancer diagnosis.First,the SE module is integrated into Res2 Net to construct Se-Res2 Net to replace the original feature extraction network in YOLOv3 to improve the ability of model feature extraction.Then,a new Downsample Block is built to solve the problem of information loss in the downsampling operation of the original model.Finally,to further improve the ability of feature extraction,the residual connection network and dense connection network are combined to construct ResDenseNet to replace the residual connection mode of the original model.The experimental results show that the above improvements are effective,and the mAP of the improved algorithm is 4.56%higher than that of the original algorithm.
作者 徐立芳 傅智杰 莫宏伟 XU Lifang;FU Zhijie;MO Hongwei(Engineering Training Center,Harbin Engineering University,Harbin 150001,China;Automation College,Harbin Engineering University,Harbin 150001,China)
出处 《智能系统学报》 CSCD 北大核心 2021年第1期21-29,共9页 CAAI Transactions on Intelligent Systems
关键词 乳腺癌 超声影像 YOLOv3 SE-Res2Net 下采样模块 残差连接 密集连接 breast cancer ultrasonography YOLOv3 SE-Res2Net downsample block residual connection dense connection
  • 相关文献

参考文献4

二级参考文献36

  • 1高道利,胡永伟,王文婉,陈范良,潘雷达,袁亚,郁领娣,钱锋.乳房自我检查对降低女性乳腺癌死亡率干预效果的评估[J].中华流行病学杂志,2006,27(11):985-990. 被引量:14
  • 2马步云,彭玉兰,罗燕,林玲,文晓蓉,邱逦,卢强,周琛云.超声诊断乳腺癌的漏诊和误诊分析[J].华西医学,2007,22(1):16-17. 被引量:14
  • 3邵志敏,余科达.乳腺外科的发展趋势[J].中国普外基础与临床杂志,2007,14(3):252-254. 被引量:68
  • 4顾雅佳,肖勤.乳腺X线报告规范化——BI-RADS介绍[J].中国医学计算机成像杂志,2007,13(5):322-326. 被引量:49
  • 5American College of Radiology. Breast imaging reporting and data system (BI-RADS). 4th edition. Reston (VA) 7 American College of Radiology, 2003.
  • 6Mendelson EB, Baum JK, Berg WA, et al. Breast imaging reporting and data system: ultrasound. Reston: American College of Radiology, 2003: 1-81.
  • 7Heinig J, Witteler R, Scbmitz R, et al. Accuracy of classification of breast ultrasound findings based on criteria used for BI-RADS. Ultrasound Obstet Gynecol, 2008, 32(4): 573-578.
  • 8Erguvan-Dogan B, Gj W, Kushwaha AC, et al. BI-RADS-MRI: a primer. A JR Am J Roentgenol, 2006, 187(2): W152-W160.
  • 9Kuhl CK, Mielcareck P, Klaschik S, et al. Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions. Radiology, 1999, 211(1): 101-110.
  • 10Macura KJ, Ouwerkerk R, Jacobs MA, et al, Patterns of enhancement on breast MR images: interpretation and imaging pitfalls. Radiographics, 2006, 26(6): 1719-1734.

共引文献1050

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部