期刊文献+

航拍视频车辆检测目标关联与时空轨迹匹配 被引量:17

Association of Vehicle Object Detection and the Time-space Trajectory Matching from Aerial Videos
下载PDF
导出
摘要 高解析度轨迹数据蕴含丰富车辆行驶与交通流时空信息。为从航拍视频中提取车辆轨迹,构建了车辆检测目标跨帧关联与轨迹匹配融合方法。采用卷积神经网络YOLOv5构建视频全域车辆目标检测,提出车辆动力学与轨迹置信度约束下跨帧目标关联算法,建立了基于最大相关性的断续轨迹匹配与融合构建算法,实现轨迹车辆唯一编号。将轨迹从图像坐标转换为车道基准下Frenet坐标,构建集合经验模态分解(EEMD)模型进行轨迹数据噪声消除。采用南京市快速路无人机拍摄的2组开源航拍视频,涵盖拥堵与自由流交通状态,对轨迹提取算法进行效果测试。结果表明,在自由流和拥挤条件下轨迹准确率分别为98.86%和98.83%,轨迹召回率为93.00%和86.69%,构建算法的轨迹提取速度为0.07 s/辆/m。该方法处理得到的详细车辆时空轨迹信息能为交通流、交通安全、交通管控研究提供广泛的数据支撑,数据公开于http://seutraffic.com/。 High resolution track data contains rich information about vehicle travel and traffic flow.The fusion method of cross-frame vehicle detection association and trajectory matching is developed to extract the vehicle trajectories from the aerial video.The convolutional neural network,YOLOv5,is used to obtain video-wide vehicle object detection.Base on the result of detection,a correlation algorithm of a cross-frame target under the constraints of vehicle dynamics and trajectory confidence is proposed.Then,broken track matching and constructing algorithms based on the maximum correlation are established for identifying unique vehicles.The trajectory is converted from image coordinates to Freenet coordinates under lane reference,and the ensemble empirical mode decomposition(EEMD)model has been constructed to eliminate data noise.Two sets of open-source aerial videos,coving congestion and free-flow traffic status,are taken by a drone on the Nanjing expressway to test the effect of the trajectory extraction algorithm.The results show that the trajectory accuracies are 98.86 and 98.83%under the free flow and congested conditions,respectively.Besides,the track recall rates are 93.00 and 86.69%.The trajectory extraction speed of the algorithm is 0.07 s/vehicle/m.The vehicle trajectory dataset processed by this method can provide extensive data support for traffic flow,traffic safety,and traffic control research.The dataset is published at http://seutraffic.com/.
作者 冯汝怡 李志斌 吴启范 范昌彦 FENG Ruyi;LI Zhibin;WU Qifan;FAN Changyan(School of Transportation,Southeast University,Nanjing 210096,China)
出处 《交通信息与安全》 CSCD 北大核心 2021年第2期61-69,77,共10页 Journal of Transport Information and Safety
基金 国家自然科学基金项目(71871057)资助。
关键词 车辆轨迹 车辆检测 航拍视频 轨迹构建 轨迹数据 vehicle trajectory vehicle detection UAV aerial video trajectory construction trajectory data
  • 相关文献

参考文献3

二级参考文献30

  • 1张智勇,黄轶,任福田.城市快速道路跟车行为的状态划分[J].北京工业大学学报,2009,35(11):1512-1515. 被引量:3
  • 2Gao Dashan,Vasconcelos N. Bottom-up Saliency is a Discriminant Process [C]//Proc. of ICCV'07. Rio de Janeiro, Brazil: IEEE Press, 2007: 1-6.
  • 3ltti L, Koch C, Niebur E. A Model of Saliency-based Visual Attention for Rapid Scene Analysis [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20 (11):1254-1259.
  • 4Harel J, Koch C, Perona P. Graph-based Visual Sa!iency[C]//Proc. of NIPS'06. Vancouver, Canada: [s. n.], 2006: 545-552.
  • 5Hou Xiaodi,Zhang Liqing.Saliency Detection:A Spectral Residual Approach [C]//Proc. of CVPR'07. Minneapolis, USA: [s. n.], 2007: 1-8.
  • 6Xu 〇,jin L, jie F, et al. Air-Ground Vehicle Detection using Local Feature Learning and Saliency Region Detection [C]// Intelligent Control and Automation (WCICA),2012 10th World Congress on. 2012. 4726-4731.
  • 7D.Ruderman.The Statistics of Natural Images [J],Network: Coputat丨on in Neural Systems, 1994,5(4):517-548.
  • 8Viola P, Jones M J. Robust real-time face detection[J]. International journal of computer vision, 2004, 57(2): 137-154.
  • 9KUMAR R , SAWHNEY H , SAMARASEKERA S, et al.Aerial video surveillance and exploitation[J] . Proc IEEE,2001,89(10) : 1518-1539.
  • 10EMST I , SUJEW S , THIESSENHUSEN K U , et al.LUMOS- airbome traffic monitoring system [J]. ProcIEEE Intell Transp Syst,2003, 1 : 753-759.

共引文献10

同被引文献147

引证文献17

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部