期刊文献+

PMI与Hownet结合的中文微博情感分析 被引量:3

Chinese Microblog Polarity Classification Based on Hownet and PMI
下载PDF
导出
摘要 为解决中文微博情感的分类问题,文中提出了基于微博数据将PMI与Hownet相结合的情感分类方法。通过对微博数据短小、新颖特征的研究,提出词典合并方法。将现有词典按照Hownet词语相似度合并,利用PMI对网络词语进行情感分类。添加网络情感词构造适应微博文本特征的情感词典,并在新词典的基础上结合监督学习方法训练情感分类模型。实验结果表明,用此方法进行情感分析能够有效识别网络新词对情感分析的影响,准确率可达78.3%,在对含有网络新词的微博情感分析上,该方法相比仅使用词典或者监督学习的准确率更高。 To solve the problem of Chinese microblog sentiment classification,a sentiment classification method combining PMI and Hownet based on microblog data is proposed.Through the research on the short and novel features of microblog data,a method of dictionary merging is proposed.The existing dictionaries are merged according to Hownet word similarity,and PMI is used to perform sentiment classification of online words.The network sentiment words are added to construct sentiment dictionary that adapts to the features of microblog text,and sentiment classification models are trained based on the new dictionary combined with supervised learning methods.The experimental results show that using this method for sentiment analysis can effectively identify the impact of new internet words on sentiment analysis,with an accuracy rate of 78.3%.In the sentiment analysis of microblog containing new words on the Internet,the accuracy rate is higher than that of only using dictionaries or supervised learning.
作者 郝苗 陈临强 HAO Miao;CHEN Linqiang(Computer and Software School,Hangzhou Dianzi University,Hangzhou 310018,China)
出处 《电子科技》 2021年第7期50-55,78,共7页 Electronic Science and Technology
基金 国家级大学生创新创业训练项目(201610336013)。
关键词 情感词典 微博文本分类 监督学习 情感分析 Hownet相似度 PMI 观点挖掘 基准词 sentiment dictionary microblog text classification supervised learning sentiment analysis Hownet similarity PMI opinion mining benchmark words
  • 相关文献

参考文献3

二级参考文献27

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2余正涛,樊孝忠,郭剑毅,耿增民.基于潜在语义分析的汉语问答系统答案提取[J].计算机学报,2006,29(10):1889-1893. 被引量:44
  • 3Lu Y, Castetlanos M, Dayal U, et al. Automatic Construc- tion of a Context-Aware Sentiment Lexicon: An Optimiza- tion Approach[C]//World Wide Web Conference Series. Newyork: ACM, 2011, 347-356.
  • 4Turney P D, Littman M L. Measuring Praise and Criticism: Inference of Semantic Orientation from Association[J]. ACM Transactions on Information Systems, 2003,21(4) : 315- 346.
  • 5知网.《知网》隋感分析用词语集[EB/OL].[2015-04-15].http://www.keenage.com/htmFcindex.html.
  • 6大连理工大学信息检索研究室.大连理工大学情感词汇本体库[EB/OL].[2015-04-15].http://ir.dlut.edu.cn/EmotionOntologyDownload.asp?xutm_source=weibolife.
  • 7ICTCLAS分词系统.ICTCLAS下载[EB/OL].[2015-06-11].http://ictclas/orgJ‘ictclas_download.aspx.
  • 8刘群,李素建.基于《知网》的词汇语义相似度的计算[EB/OL]_[2015-06-15].http://www.docin.com/P一655858216.htrnl.
  • 9Tong R M. An Operational System for Detecting and Tracking Opinions in Online Discussion [ C ]. In:Working Notes of the ACM SIGIR 2001 Workshop on Operational Text Classification. New York : ACM, 2001 : 1-6.
  • 10TURKEY P D. Thumbs up or thumbs down?- semantic orientation applied to unsupervised classification of reviews [C]. //Proceedings of the 40th annual meeting on association for computational linguistics. Association for Computational Linguistics, 2002 : 417-424.

共引文献45

同被引文献53

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部