期刊文献+

平坦函数之高阶导数的估计及应用

Estimation of Higher-Order Derivatives of Flat Functions and its Application
原文传递
导出
摘要 研究平坦函数n阶导函数的上确界范数.基于泛函分析的思想,使用基本的数学分析知识,证明了上确界范数之渐近增长快于n的阶乘,并用此结论重新证明了完全单调函数的解析性.文末还阐释了该渐近估计在一定意义下达到了最优. In this paper,we investigate the sup-norm of n-th derivative for any flat function.Based on ideas from functional analysis,using some basic knowledge of mathematical analysis,we prove that the asymptotic growth of sup-norms is faster than n!.As an application of this result,we give a new proof of the analyticity of completely monotonic functions.In the end of this paper we also show that our asymptotic estimation is optimal in some sense.
作者 蒋剑剑 汪宇轩 黄书棋 JIANG Jian-jian;WANG Yu-xuan;HUANG Shu-qi(School of Mathematics and Physics,Ningde Normal University,Ningde 352100,China;College of Mathematics and Computer Science,Fuzhou University,Fuzhou 350108,China)
出处 《数学的实践与认识》 2021年第9期224-228,共5页 Mathematics in Practice and Theory
基金 宁德师范学院科研资助项目(2017Y07) 宁德师范学院教改项目(JG2019002)。
关键词 平坦函数 高阶导数 完全单调函数 解析性 flat function higher-order derivatives completely monotonic function analyticity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部