期刊文献+

基于深度神经网络的客机总体设计参数敏感性分析 被引量:8

Sensitivity analysis of key design parameters of commercial aircraft using deep neural network
原文传递
导出
摘要 飞机总体主要设计参数敏感性分析揭示了总体主要设计参数对飞机特性指标的影响,有助于总体设计方案的决策。针对宽体客机总体主要设计参数敏感性问题,根据其总体主要设计参数和特性指标的特点,以及多学科间的耦合关系,建立了深度神经网络模型。该深度神经网络模型以客机总体主要设计参数为输入,对特性指标进行预测。在深度神经网络模型中,设置了多个输入层、多个输出层以及多个分块的隐藏层,从而模拟客机总体主要设计参数对特性指标的影响以及不同特性指标之间的相互作用。测试结果表明,与传统代理模型相比,深度神经网络模型对客机特性指标的预测精度更高,多参数适应性更好。利用该深度神经网络模型对客机总体主要设计参数进行敏感性分析。分析结果表明,机翼1/4弦线后掠角在30°~31.5°时,有利于减少最大起飞重量和起飞平衡场长;发动机海平面最大静推力和机翼面积对客机直接使用成本、最大起飞重量等特性指标的影响最为显著。 The sensitivity analysis of key design parameters of aircraft reveals the relationship between the key design parameters and aircraft characteristics,facilitating the decision making in aircraft preliminary design.Aiming at the key design parameter sensitivity of wide-body commercial aircraft,we establish a deep neural network model based on the features of key design parameters and aircraft characteristics and the coupling relationship among multiple disciplines,taking the key design parameters as input to predict the aircraft characteristics.In this model,multiple input layers,multiple output layers,and multiple blocks of hidden layers are set to simulate the effects of key design parameters on aircraft characteristics and the interactions among different aircraft characteristics.Comparisons with traditional surrogate models reveal that the deep neural network model has higher prediction accuracy and better adaptability to the aircraft characteristics.The proposed model is then used to analyze the sensitivity of the commercial aircraft primary parameters.The analysis results show that a lower maximum takeoff weight and a shorter takeoff balanced field length can be achieved when the wing sweep at 1/4 chord is between 30° to 31.5°.The maximum static thrust of engines at sea level and the wing area have the most significant influence on the direct operation cost,maximum takeoff weight,and other characteristics.
作者 范周伟 余雄庆 王朝 钟伯文 FAN Zhouwei;YU Xiongqing;WANG Chao;ZHONG Bowen(Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle,College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;Beijing Aeronautical Science&Technology Research Institute,COMAC,Beijing 102211,China)
出处 《航空学报》 EI CAS CSCD 北大核心 2021年第4期378-387,共10页 Acta Aeronautica et Astronautica Sinica
基金 中国商飞北京民用飞机技术研究中心民用飞机设计数字仿真技术北京市重点实验室开放课题。
关键词 飞机总体设计 敏感性分析 深度神经网络 客机 代理模型 aircraft conceptual design sensitivity analysis deep neural network commercial aircraft surrogate model
  • 相关文献

参考文献9

二级参考文献61

  • 1周勇,朱彦鹏.黄土地区框架预应力锚杆支护结构设计参数的灵敏度分析[J].岩石力学与工程学报,2006,25(z1):3115-3122. 被引量:34
  • 2黄继鸿,苏红莲,赵新华.基于BP神经网络的翼型空气动力系数预测[J].航空工程进展,2010,1(1):36-39. 被引量:13
  • 3朱自强,王晓璐,吴宗成,陈泽民.民机设计中的多学科优化和数值模拟[J].航空学报,2007,28(1):1-13. 被引量:17
  • 4Chacksfield J E. Multivariate optimisation techniques and their impact on the aircraft design progress[J]. Progress in Aerospace Sciences, 1997, 33(11-12): 731- 757.
  • 5Coen P G, Foss W E, Jr. Computer sizing of aircraft[J].Journal of Aircraft, 1988, 23(5) : 353-354.
  • 6Green L L, Lin H Z, Khalessi M R. Probabilistic methods for uncertainty propagation applied to aircraft design[R]. AIAA- 2002-3140, 2002.
  • 7Jin R, Du X, Chen W. The use of metamodeling techniques for optimization under uncertainty[J]. Journal of Structural and Multidisciplinary Optimization, 2003, 25 (2): 99 -116.
  • 8Wang Y, Yu X Q. Robust optimization of aerodynamic design using surrogate model[J]. Transaction of Nan iing University of Aeronautics and Astronautics, 2007, 24 (3) :181-187.
  • 9Raymer D P. Vehicle scaling laws for multidisciplinary optimization[R]. AIAA-2001 -0532, 2001.
  • 10Raymer D P. Aircraft design: a conceptual approach[M]. Washington D. C.: AIAA Inc. , 1999.

共引文献141

同被引文献90

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部