期刊文献+

基于社会化标签挖掘的微博内容推荐方法研究 被引量:7

Micro-blog Content Recommendation Method Based on Social Tag Mining
原文传递
导出
摘要 【目的/意义】针对当前微博内容推荐方法存在的用户标签偏少、标签语义缺乏和用户-标签矩阵高维稀疏等导致的推荐准确性不高的问题,提出了一种基于社会化标签挖掘的微博内容个性化推荐方法。【方法/过程】首先,针对用户标签偏少的问题,借助微博内容进行用户标签扩充,形成初始的用户-标签矩阵表征用户兴趣偏好;然后,针对标签语义缺乏问题,通过标签语义映射和语义相关性挖掘,构建标签语义相似度矩阵进行用户-标签矩阵更新,使更新后的用户-标签矩阵融入标签间的语义相关性,既能解决用户-标签矩阵高维稀疏问题,又能更好地表征用户兴趣。【结果/结论】实验结果表明,该方法优于传统的基于社会化标签的推荐方法,能够有效提高微博内容推荐的精准性。【创新/局限】后续将重点研究用户间社交关系对个性化推荐的影响,探索融合用户社交关系的微博内容个性化推荐方法,实现更加精准的推荐。 【Purpose/significance】In view of the low accuracy of recommendation caused by the less user tags,lack of tag semantics and the high dimensional sparsity of user-tag matrix in the current microblog content recommendation methods,a personalized recommendation method based on social tag mining is proposed.【Method/process】First,aiming at the problem of less user tags,user tags are expanded with the help of microblog content to form the initial user-tag matrix to represent users’interests and preferences;then,for the lack of tag semantics,through the label semantic mapping,mining and semantic relevance,the tag semantic similarity matrix is constructed to update the user-tag matrix,making the updated user-tag matrix integrate into the semantic correlation between tags.It can solve the problem of users-tag high-dimensional sparse matrix,and better represent users’interests.【Result/conclusion】Experimental results show that this method is better than the traditional recommendation method based on social tags,and can effectively improve the accuracy of microblog content recommendation.【Innovation/limitation】In the future,we will focus on the impact of social relationship between users on personalized recommendation,and explore personalized recommendation method of microblog content integrating user social relationship,so as to achieve more accurate recommendation.
作者 王战平 夏榕 WANG Zhang-ping;XIA Rong(Research Center of State Cultural Industry,Central China Normal University,Wuhan 430079,China;School of Information Management,Central China Normal University,Wuhan 430019,China)
出处 《情报科学》 CSSCI 北大核心 2021年第5期91-96,共6页 Information Science
基金 国家社会科学基金一般项目“虚拟学术社区中科研人员合作机制研究”(18BTQ081)。
关键词 微博内容推荐 社会化标签挖掘 用户兴趣表示模型 个性化推荐 用户标签 micro-blog content recommendation social tag mining user interesting representation model personalized recommendation user tags
  • 相关文献

参考文献8

二级参考文献122

  • 1杨晶,杨长春,丁虹.一种改进的新浪微博好友推荐算法[J].常州大学学报(自然科学版),2013,25(3):66-70. 被引量:3
  • 2贺敏,王丽宏,杜攀,张瑾,程学旗.基于有意义串聚类的微博热点话题发现方法[J].通信学报,2013,34(S1):256-262. 被引量:12
  • 3李涛,王建东,叶飞跃,冯新宇,张有东.一种基于用户聚类的协同过滤推荐算法[J].系统工程与电子技术,2007,29(7):1178-1182. 被引量:70
  • 4卜小蝶.浅谈社会性标记之意涵与应用[EB/OL].[2007-08-15].http://www.1ib.tku.edu.tw/libintro/pub/web20&lib_semina/social.tag_ft.pdf.
  • 5Vander Wal T. Folksonomy coinage and definition [ EB/OL ]. [ 2014 - 05 - 06 ]. http ://vanderwal. net/folksonomy, html.
  • 6Smith G. Tagging: People-powered metadata for the social Web [ M ]. Berkeley: New Riders, 2008.
  • 7Golder S A, Huberman B A. The structure of collaborative tagging systems[J]. Journal of Information Science, 2006, 32 (2) :198 - 208.
  • 8Sen S, I.am S K, Rashid A M, et al. Tagging, communities, vo- cabulary, evolution [ C ]//Proceedings of the 20th AnniversaryConference on Computer Supported Cooperative Work. New York: ACM, 2006 : 181 - 190.
  • 9Gupta M, Li Ri, Yin Zhijun, et al. Survey on social tagging tech- niques [ J ]. ACM SIGKDD Explorations Newsletter, 2010,12 ( 1 ) : 58 - 72.
  • 10Marlow C, Naaman M, Boyd D, et al. HT06, tagging paper, tax- onomy, Flickr, academic article, to read [ C ]//Proceedings of the 17th Conference on Hypertext and hypermedia. New York: ACM, 2006:31 -40.

共引文献77

同被引文献93

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部