期刊文献+

Keypoints and Descriptors Based on Cross-Modality Information Fusion for Camera Localization

原文传递
导出
摘要 To address the problem that traditional keypoint detection methods are susceptible to complex backgrounds and local similarity of images resulting in inaccurate descriptor matching and bias in visual localization, keypoints and descriptors based on cross-modality fusion are proposed and applied to the study of camera motion estimation. A convolutional neural network is used to detect the positions of keypoints and generate the corresponding descriptors, and the pyramid convolution is used to extract multi-scale features in the network. The problem of local similarity of images is solved by capturing local and global feature information and fusing the geometric position information of keypoints to generate descriptors. According to our experiments, the repeatability of our method is improved by 3.7%, and the homography estimation is improved by 1.6%. To demonstrate the practicability of the method, the visual odometry part of simultaneous localization and mapping is constructed and our method is 35% higher positioning accuracy than the traditional method.
出处 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2021年第2期128-136,共9页 武汉大学学报(自然科学英文版)
基金 Supported by the National Natural Science Foundation of China (61802253)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部